PROBABILISTIC CLASSIFIERS CAN PREDICT RADIATION EXPOSURE IN RODENTS FROM PERFORMANCE TESTS

A. Schepelmann, M. Matar, R.A. Britten, B.E. Lewandowski | NASA IWS 2020 | 2020-01-27

DATA DRIVEN MODELS CAN EXPLORE COMPLEXITIES OF CBS RISKS

- Sensorimotor, radiation, and stress can impact in-mission performance.
 - We here focus on radiation-induced performance decrements.
- Galactic cosmic radiation (GCR) exposure impairs cognitive performance.
 - Wistar rats exhibit discrimination impairment after GCR exposure [1].
- *A priori* modeling of radiation effects is difficult.
- Data driven models can capture data trends without modeling assumptions.
- Data driven models natively account for noise with sufficient training data.

DATA DRIVEN TREND MODELING USING RODENT ATTENTIONAL SET-SHIFTING ASSAY RESULTS

DATA DRIVEN MODELS ARE DEVELOPED FROM ANALOG STUDY DATA

- Data that relates human radiation to cognitive performance is limited.
- Rodent *medial* and primate *lateral- pre-frontal cortex* functions are similar [2].
- Rodent "Attentional Set-Shifting" (ATSET) assay is therefore used as an analog study.
 - This test measures the ability to discern between cues to obtain a food reward.
- Tested rodents each received different radiation doses from single-ion beams [3].
 - None, Helium (⁴He), Oxygen (¹⁶O), Silicon (²⁸Si), Titanium (⁴⁸Ti), and Iron (⁵⁶Fe).
- **Goal:** Infer received radiation dose to make go/no-go mission decisions.

THE DATA DRIVEN MODEL RELATES PERFORMANCE VS. ION DOSE

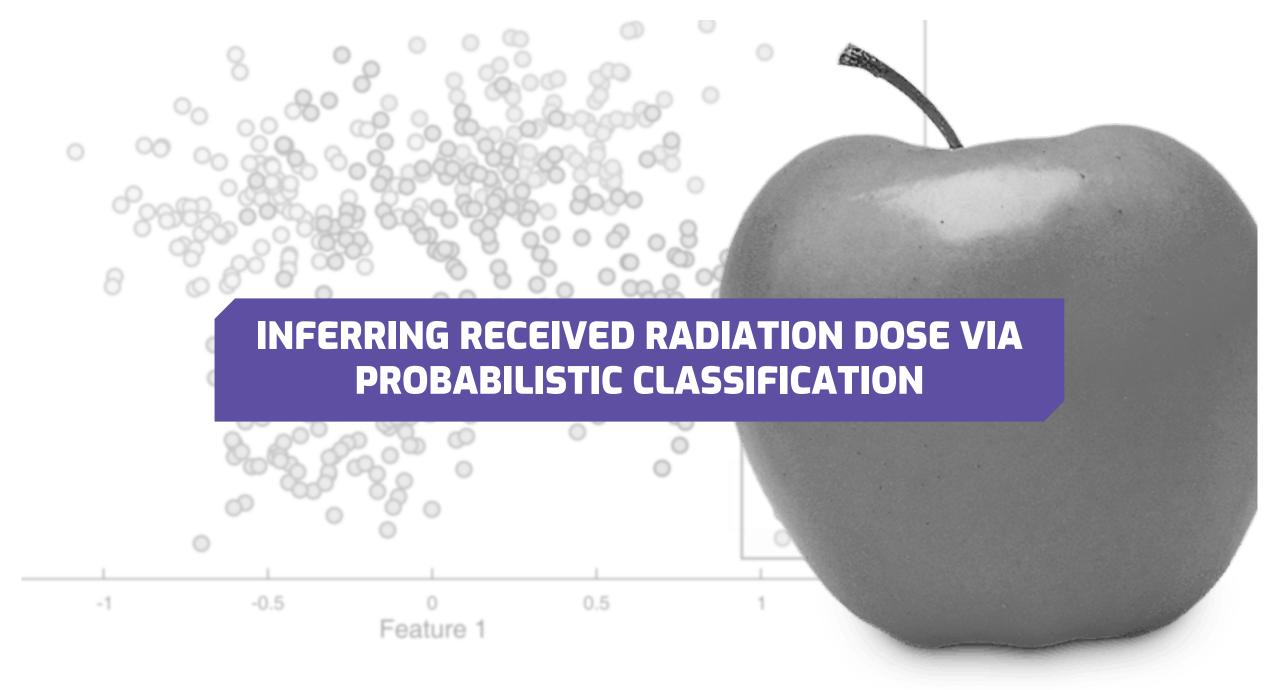
²⁸ Si DATA			ATTEMPTS TO REACH CRITERION (ATRC)						MEAN CORRECT LATENCY TIME (MCL) (5)						
SUBJECT ID	DOSE (cGy)	SD	CD	CDR	IDS	IDR	EDS	EDR	SD	CD	CDR	IDS	IDR	EDS	EDR
2BCC	1	12	13	7	7	13	6	8	14.1	18.3	16.9	10.4	9.9	14.7	9.4
5976	1	12	6	10	6	6	6	6	9.0	14.8	18.2	20.0	9.8	9.8	8.3
							•••		•••				•••		
A78A	15	8	36	6	6	6	16	17	15.6	11.2	11.2	16.8	18.5	13.1	8.1

Table II: Sample ATSET data for ²⁸Si. Performance decrements should manifest as larger ATRC and MCL for higher doses [1].

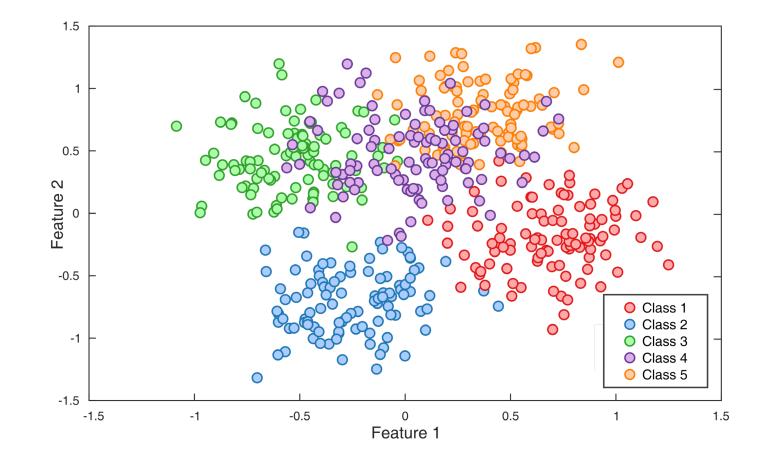
²⁸ Si [NORMALIZED ATRC						NORMALIZED MCL								
SUBJECT ID	DOSE (cGy)	SD	CD	CDR	IDS	IDR	EDS	EDR	SD	CD	CDR	IDS	IDR	EDS	EDR
2BCC	1	1	1.1	0.6	0.6	1.1	0.5	0.7	1.0	1.3	1.2	0.7	0.7	1.0	0.7
5976	1	1	0.5	0.8	0.5	0.5	0.5	0.5	1.0	1.7	2.0	2.2	1.1	1.1	0.9
			•••												•••
A78A	15	1	4.5	0.8	0.8	0.8	2.0	2.1	1.0	0.7	0.8	1.1	1.2	0.8	0.5

Table III: Normalized ATSET data for ²⁸Si. SD ATRC and MCL values used for respective normalization [4].

[1] J.S. Jewel *et al.* Exposure to ≤ 15 cGy of 600 MeV/n ⁵⁶Fe Particles Impairs Rule Acquisition but not Long-Term Memory in the Attentional Set-Shifting Assay. Radiation Research, 190(1): 565-575, 2018.
[4] J.M. Heisler *et al.* The attentional set shifting task: a measure of cognitive flexibility in mice. Journal of Visualized Experiments: JoVE, 96(1): 1-6, 2015



A CLASSIFICATION APPROACH YIELDS A MULTI INPUT, SINGLE OUTPUT MODEL



Classifying data based on clustering from two features.

PROBABILISTIC CLASSIFICATION VIA GAUSSIAN NAÏVE BAYES (GNB)

Given a set of features X^{new} to describe a sample... $X^{new} = \langle X_1, ..., X_n \rangle$ $\hat{y} = \underset{j \in \{1, \dots, J\}}{\operatorname{argmax}} \propto P(Y = y_j) \prod_{j \in \{1, \dots, J\}} P(X_i^{new} | Y = y_j)$

... the sample described by those features most likely came from group y_i ...

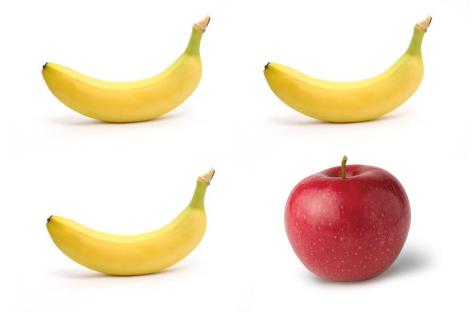
... based on other samples with the same features.

Naïve Bayes classifier using the maximum a posteriori decision rule.

$$P(Y = \bullet | X = \square) \propto P(X = \square | Y = \bullet) P(Y = \bullet)$$
$$\propto 0 * 0.25 = 0$$

$$P(Y = |X = |X = |X = |Y =)P(Y =)$$

 $\propto 1 * 0.75 = 0.75$



The banana-apple universe, where 75% of all fruit are bananas.

GNB EXAMPLE: CLASSIFYING APPLES WITH INSUFFICIENT FEATURES

$$P(Y = \bullet | X = \square) \propto P(X = \square | Y = \bullet) P(Y = \bullet)$$
$$\propto 0.2 * 0.33 = 0.07$$

P(Y = |X = |X = |Y =)P(Y =) $\propto 0.8 * 0.66 = 0.53$

The banana-apple universe, where 66% of all fruit are bananas and yellow apples exist.

GNB EXAMPLE: CLASSIFYING APPLES WITH MULTIPLE FEATURES

$$P(Y = |X = |X = |Y = |Y =)P(X = round|Y =)$$

$$\propto P(Y =) * P(X = |Y =)P(X = round|Y =)$$

$$\propto 0.66 * 0.8 * 0 = 0$$

$$P(Y = \bullet | X =], round)$$

$$\propto P(Y = \bullet) * P(X =] | Y = \bullet) P(X = round | Y = \bullet)$$

$$\propto 0.33 * 0.2 * 1 = 0.07$$

The banana-apple universe, but fruits are described by color <u>and</u> shape.

ESTIMATING THE CONDITIONAL PROBABILITY OF CONTINUOUS VALUES

$$P(Y = y_j) \prod_{i=1}^{n} P(X_i | Y = y_j)$$

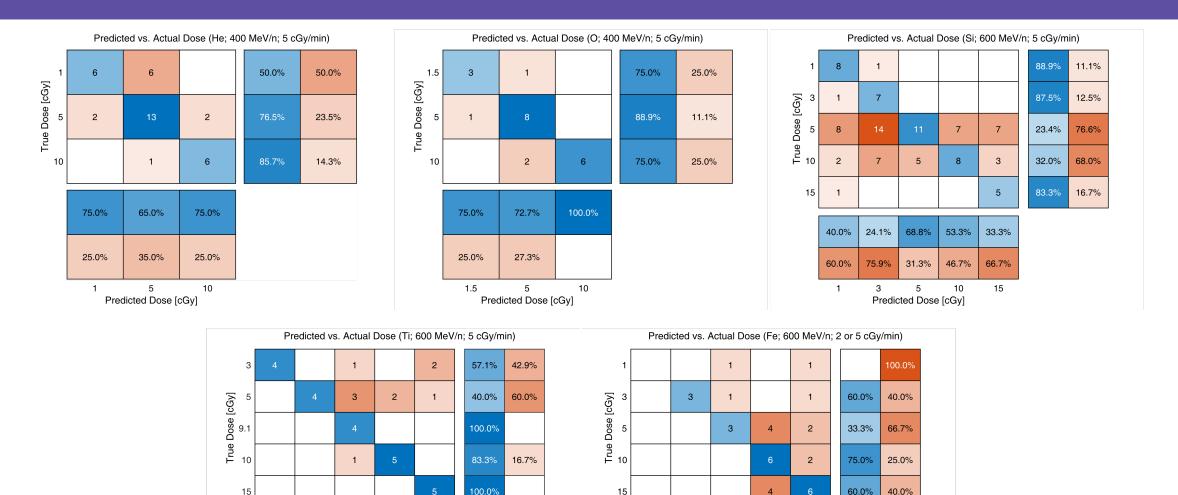
$$\bigcap_{i=1}^{n} P(X_i | Y = y_j)$$
Calculated as (n_{class} / n_{tot})
Feature mean of class
$$P(X = x_i | Y = y_j) = \frac{1}{\sqrt{2\pi\sigma_{y_j}^2}} e^{-(x_i - \mu_{y_j})^2/(2\sigma_{y_j}^2)}$$
Feature standard deviation of class
Feature standard deviation of class

- GNB enables multi-feature prediction about exposure dose/type from ATSET values.
 - Naïve Bayes probabilistically combines multiple features/measurements.
- Data-driven classification model requires little data given representative statistics.
- **Caveat:** Due to data availability, we are training and testing on the same data set.
 - This analysis therefore represents the best possible classification scenario.

	0 cGy	1 cGy	1.5 cGy	З сGy	5 cGy	9.1 cGy	10 cGy	15 cGy
⁴ He	0.47	0.18	-	-	0.25	-	0.10	-
¹⁶ O	0.71	-	0.09	-	0.2	-	-	-
²⁸ Si	0.25	0.07	-	0.06	0.37	-	0.20	0.05
⁴⁸ Ti	0.50	-	-	0.11	0.16	0.06	0.09	0.08
⁵⁶ Fe	0.48	0.03	-	0.07	0.14	-	0.12	0.15

Prior probability based on data. Subsequent analyses will assume a uniform prior and additionally use MCL data as classification features.

PREDICTING DOSE FROM ATRC AND MCL VALUES WITH A UNIFORM PRIOR



100.0%

3

1

60.0%

40.0%

5

Predicted Dose [cGv]

42.9%

57.1%

10

50.0%

50.0%

15

100.0% 100.0%

5

З

44.4%

55.6%

9.1

Predicted Dose [cGy]

71.4%

28.6%

10

62.5%

37.5%

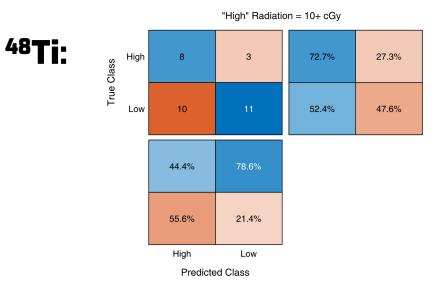
15

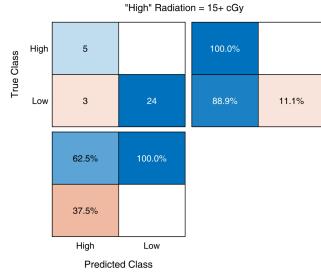
- Naïve Bayes classifier is able to distinguish between doses with mixed success.
 - Many doses are correctly identified with a probability greater than chance.
 - Sparse data with large variance may lead to unrepresentative statistics.
- GNB classification suggests that trends exist in the data.
 - This result highlights the benefits of using multiple features in a model.

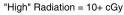
INVESTIGATING CLASSIFICATION ACCURACY WITH LARGER DATA POOLS

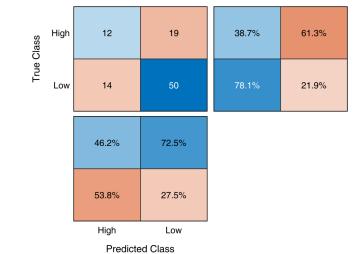
- Naïve Bayes can distinguish between doses, but can its accuracy be improved?
- Depending on the application, is knowing an exact exposure dose necessary?
 - Would a binary [impaired, not impaired] output be sufficient?
 - Pooling data could improve classification accuracy.
- The following analysis investigates effects of data pooling on classification accuracy.
 - This analysis bins data into variable "high" and "low" exposure categories.
 - "High" radiation threshold increases with subsequent analyses.

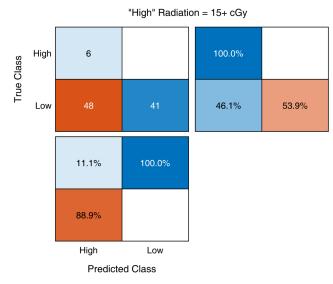
RADIATION THRESHOLD PREDICTION (ATRC & MCL, UNIFORM PRIOR)











²⁸Si:

- Prediction accuracy of pooled high and low exposure data is mixed.
 - Underlying data may be too broad to capture with single descriptor values.
 - Predicting exposures and then thresholding appears to be a better method.

CONCLUSIONS

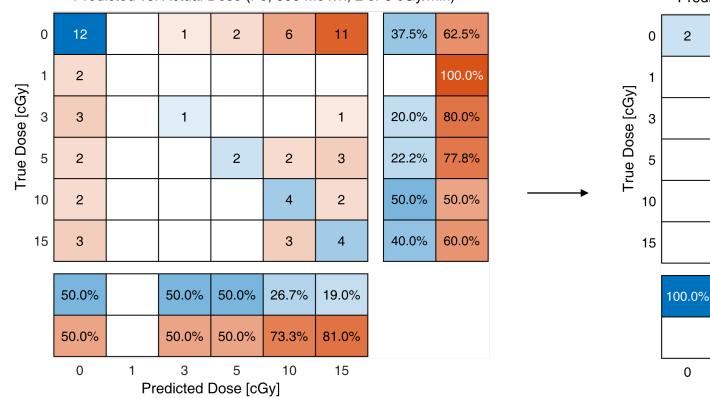
- GNB classifiers correctly identify doses with a probability greater than chance.
- The performed classification analysis:
 - Suggests that trends exist in the data.
 - Highlights the importance of additional data.
- For pooled data, classification accuracy is mixed.

- Is having a continuous model that maps exposure to impairment necessary?
 - Is the exposure-impairment relationship cumulative?
- Is being able to predict the existence of cognitive impairments sufficient?
 - For this determination, discriminative models like GNB are sufficient.
- Pre-screening performance normalization could reveal underlying data trends.

THANK YOU FOR YOUR ATTENTION. ADDITIONAL COMMENTS OR QUESTIONS?

SUPPLEMENTAL SLIDES

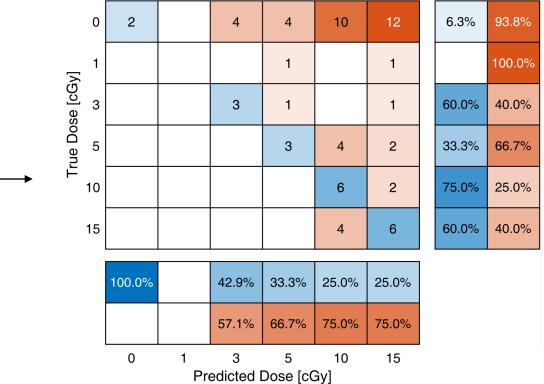
PREDICTING DOSE WITH A UNIFORM PRIOR IMPROVES ACCURACY



Predicted vs. Actual Dose (Fe; 600 MeV/n; 2 or 5 cGy/min)

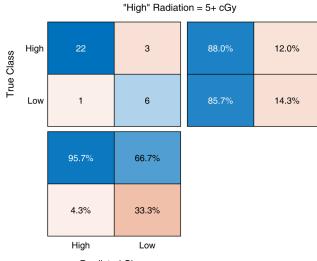
⁵⁶Fe classification with a data driven prior.

Predicted vs. Actual Dose (Fe; 600 MeV/n; 2 or 5 cGy/min)

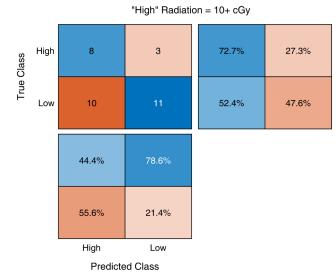


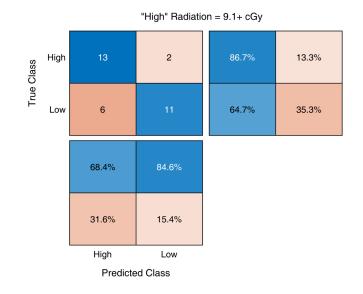
⁵⁶Fe classification with a uniform prior.

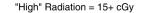
RADIATION THRESHOLD PREDICTION (ATRC & MCL, UNIFORM PRIOR): 48Ti

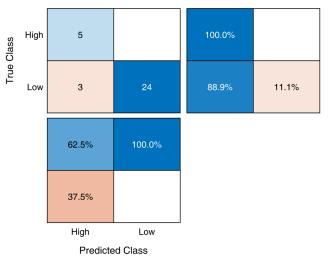


Predicted Class

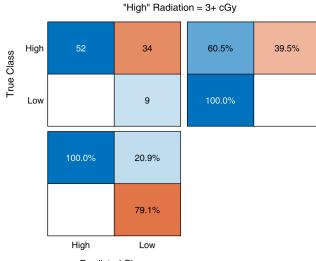




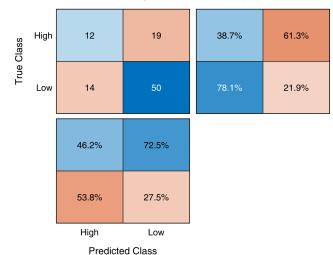


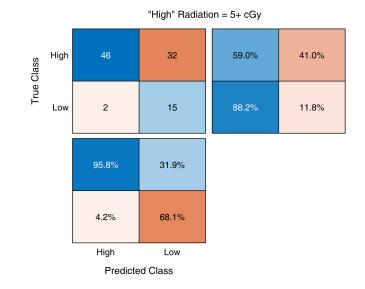


RADIATION THRESHOLD PREDICTION (ATRC & MCL, UNIFORM PRIOR): ²⁸Si

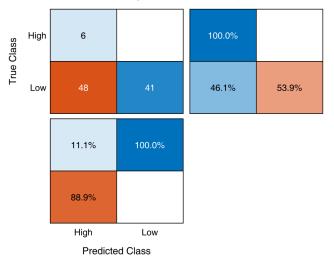


Predicted Class

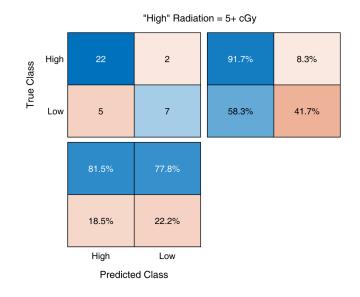


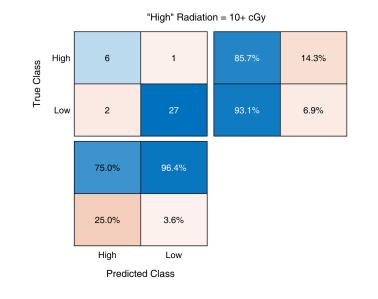


"High" Radiation = 15+ cGy

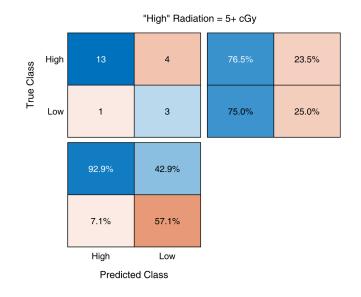


RADIATION THRESHOLD PREDICTION (ATRC & MCL, UNIFORM PRIOR): ⁴He





RADIATION THRESHOLD PREDICTION (ATRC & MCL, UNIFORM PRIOR): ¹⁶O



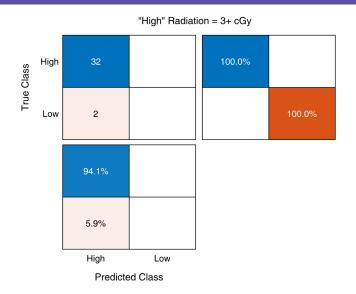
Low

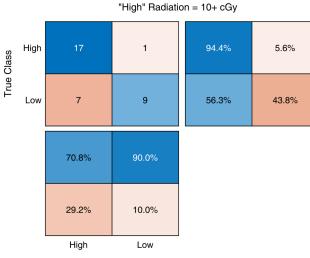
High

Predicted Class

"High" Radiation = 10+ cGy

RADIATION THRESHOLD PREDICTION (ATRC ONLY, UNIFORM PRIOR): ⁵⁶Fe





Predicted Class

