
PROBABILISTIC CLASSIFIERS CAN PREDICT RADIATION 
EXPOSURE IN RODENTS FROM PERFORMANCE TESTS

A. Schepelmann, M. Matar, R.A. Britten, B.E. Lewandowski | NASA IWS 2020 | 2020-01-27



• Sensorimotor, radiation, and stress can impact in-mission performance.

• We here focus on radiation-induced performance decrements.

• Galactic cosmic radiation (GCR) exposure impairs cognitive performance.

• Wistar rats exhibit discrimination impairment after GCR exposure [1].

• A priori modeling of radiation effects is difficult.

• Data driven models can capture data trends without modeling assumptions.

• Data driven models natively account for noise with sufficient training data.

[1] J.S. Jewel et al. Exposure to ≤ 15 cGy of 600 MeV/n 56Fe Particles Impairs Rule Acquisition but not Long-Term Memory in the Attentional Set-Shifting Assay. Radiation Research, 190(1): 565-575, 2018.

DATA DRIVEN MODELS CAN EXPLORE COMPLEXITIES OF CBS RISKS



DATA DRIVEN TREND MODELING USING RODENT 
ATTENTIONAL SET-SHIFTING ASSAY RESULTS



DATA DRIVEN MODELS ARE DEVELOPED FROM ANALOG STUDY DATA

• Data that relates human radiation to cognitive performance is limited.

• Rodent medial- and primate lateral- pre-frontal cortex functions are similar [2].

• Rodent “Attentional Set-Shifting” (ATSET) assay is therefore used as an analog study.

• This test measures the ability to discern between cues to obtain a food reward.

• Tested rodents each received different radiation doses from single-ion beams [3].

• None, Helium (4He), Oxygen (16O), Silicon (28Si), Titanium (48Ti), and Iron (56Fe).

• Goal: Infer received radiation dose to make go/no-go mission decisions.

[2] J.M. Birrell and V.J Brown. Medial frontal cortex mediates perceptual attentional set shifting in the rat. Journal of Neuroscience, 20(11): 4320-4324, 2000.
[3] R.A. Britten. Personal communication, 2019.



THE DATA DRIVEN MODEL RELATES PERFORMANCE VS. ION DOSE

28Si DATA ATTEMPTS TO REACH CRITERION (ATRC) MEAN CORRECT LATENCY TIME (MCL) [s]
SUBJECT ID DOSE [cGy] SD CD CDR IDS IDR EDS EDR SD CD CDR IDS IDR EDS EDR

2BCC 1 12 13 7 7 13 6 8 14.1 18.3 16.9 10.4 9.9 14.7 9.4

5976 1 12 6 10 6 6 6 6 9.0 14.8 18.2 20.0 9.8 9.8 8.3

… … … … … … … … … … … … … … … …

A78A 15 8 36 6 6 6 16 17 15.6 11.2 11.2 16.8 18.5 13.1 8.1

Table II: Sample ATSET data for 28Si.  Performance decrements should manifest as larger ATRC and MCL for higher doses [1].

Table III: Normalized ATSET data for 28Si.  SD ATRC and MCL values used for respective normalization [4].

28Si DATA NORMALIZED ATRC NORMALIZED MCL
SUBJECT ID DOSE [cGy] SD CD CDR IDS IDR EDS EDR SD CD CDR IDS IDR EDS EDR

2BCC 1 1 1.1 0.6 0.6 1.1 0.5 0.7 1.0 1.3 1.2 0.7 0.7 1.0 0.7

5976 1 1 0.5 0.8 0.5 0.5 0.5 0.5 1.0 1.7 2.0 2.2 1.1 1.1 0.9

… … … … … … … … … … … … … … … …

A78A 15 1 4.5 0.8 0.8 0.8 2.0 2.1 1.0 0.7 0.8 1.1 1.2 0.8 0.5

[1] J.S. Jewel et al. Exposure to ≤ 15 cGy of 600 MeV/n 56Fe Particles Impairs Rule Acquisition but not Long-Term Memory in the Attentional Set-Shifting Assay. Radiation Research, 190(1): 565-575, 2018.
[4] J.M. Heisler et al. The attentional set shifting task: a measure of cognitive flexibility in mice. Journal of Visualized Experiments: JoVE, 96(1): 1-6, 2015



INFERRING RECEIVED RADIATION DOSE VIA
PROBABILISTIC CLASSIFICATION



A CLASSIFICATION APPROACH YIELDS A MULTI INPUT, SINGLE OUTPUT MODEL

Classifying data based on clustering from two features.



PROBABILISTIC CLASSIFICATION VIA GAUSSIAN NAÏVE BAYES (GNB)

Naïve Bayes classifier using the maximum a posteriori decision rule.  

Given a set of features X new to describe a sample…

... the sample described by those features 
most likely came from group yj …

... based on other samples with the same features.



GNB CLASSIFICATION EXAMPLE: CLASSIFYING FRUIT USING ONE FEATURE

The banana-apple universe, where 
75% of all fruit are bananas.



GNB EXAMPLE: CLASSIFYING APPLES WITH INSUFFICIENT FEATURES

The banana-apple universe, where 66% 
of all fruit are bananas and yellow apples exist.



GNB EXAMPLE: CLASSIFYING APPLES WITH MULTIPLE FEATURES

The banana-apple universe, but
fruits are described by color and shape.



ESTIMATING THE CONDITIONAL PROBABILITY OF CONTINUOUS VALUES

Calculated as (nclass / ntot)

The probability density function
of a Gaussian distribution [5].

Feature mean of class

Feature standard
deviation of class

[5] Normal Distribution. Wikipedia, https://en.wikipedia.org/wiki/Normal_distribution. Accessed 2019.



DATA INVERSION + CLASSIFICATION APPROACH YIELDS A QUERYABLE MODEL

• GNB enables multi-feature prediction about exposure dose/type from ATSET values.

• Naïve Bayes probabilistically combines multiple features/measurements.

• Data-driven classification model requires little data given representative statistics.

• Caveat: Due to data availability, we are training and testing on the same data set.

• This analysis therefore represents the best possible classification scenario.



DATA DRIVEN PRIOR OF CONTROL DATA DOMINATES DUE TO SAMPLE SIZE

0 cGy 1 cGy 1.5 cGy 3 cGy 5 cGy 9.1 cGy 10 cGy 15 cGy

4He 0.47 0.18 - - 0.25 - 0.10 -

16O 0.71 - 0.09 - 0.2 - - -

28Si 0.25 0.07 - 0.06 0.37 - 0.20 0.05

48Ti 0.50 - - 0.11 0.16 0.06 0.09 0.08

56Fe 0.48 0.03 - 0.07 0.14 - 0.12 0.15

Prior probability based on data.  Subsequent analyses will assume a
uniform prior and additionally use MCL data as classification features.



PREDICTING DOSE FROM ATRC AND MCL VALUES WITH A UNIFORM PRIOR



NAÏVE BAYES CLASSIFICATION CAN DIFFERENTIATE BETWEEN DOSES

• Naïve Bayes classifier is able to distinguish between doses with mixed success.

• Many doses are correctly identified with a probability greater than chance.

• Sparse data with large variance may lead to unrepresentative statistics.

• GNB classification suggests that trends exist in the data.

• This result highlights the benefits of using multiple features in a model.



INVESTIGATING CLASSIFICATION ACCURACY WITH LARGER DATA POOLS

• Naïve Bayes can distinguish between doses, but can its accuracy be improved?

• Depending on the application, is knowing an exact exposure dose necessary?

• Would a binary [impaired, not impaired] output be sufficient?

• Pooling data could improve classification accuracy.

• The following analysis investigates effects of data pooling on classification accuracy.

• This analysis bins data into variable “high” and “low” exposure categories.

• “High” radiation threshold increases with subsequent analyses.



RADIATION THRESHOLD PREDICTION (ATRC & MCL, UNIFORM PRIOR)

48Ti:

28Si:



NAÏVE BAYES HIGH/LOW EXPOSURE PREDICTION ACCURACY IS MIXED

• Prediction accuracy of pooled high and low exposure data is mixed.

• Underlying data may be too broad to capture with single descriptor values.

• Predicting exposures and then thresholding appears to be a better method.



CONCLUSIONS



GNB WITH ATSET DATA ENABLES PROBABILISTIC EXPOSURE PREDICTION 

• GNB classifiers correctly identify doses with a probability greater than chance.

• The performed classification analysis:

• Suggests that trends exist in the data.

• Highlights the importance of additional data.

• For pooled data, classification accuracy is mixed.



THE PERFORMED ANALYSIS POSES SEVERAL QUESTIONS

• Is having a continuous model that maps exposure to impairment necessary?

• Is the exposure-impairment relationship cumulative?

• Is being able to predict the existence of cognitive impairments sufficient?

• For this determination, discriminative models like GNB are sufficient.

• Pre-screening performance normalization could reveal underlying data trends.  



THANK YOU FOR YOUR ATTENTION.
ADDITIONAL COMMENTS OR QUESTIONS?



SUPPLEMENTAL SLIDES



PREDICTING DOSE WITH A UNIFORM PRIOR IMPROVES ACCURACY

56Fe classification with a data driven prior. 56Fe classification with a uniform prior.



RADIATION THRESHOLD PREDICTION (ATRC & MCL, UNIFORM PRIOR): 48Ti



RADIATION THRESHOLD PREDICTION (ATRC & MCL, UNIFORM PRIOR): 28Si



RADIATION THRESHOLD PREDICTION (ATRC & MCL, UNIFORM PRIOR): 4He



RADIATION THRESHOLD PREDICTION (ATRC & MCL, UNIFORM PRIOR): 16O



RADIATION THRESHOLD PREDICTION (ATRC ONLY, UNIFORM PRIOR): 56Fe
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