COMPUTATIONAL MODELING IN SUPPORT OF NASA'S HUMAN RESEARCH PROGRAM

Alexander Schepelmann, Ph.D. | NASA GRC Machine Learning Forum | 2019-07-29

CWRU: CWRU Cutter autonomous lawnmower.

CMU: Robotic Neuromuscular Leg.

CMU: Compact nonlinear SEA springs.

ZIN Technologies: Robotics and computational modeling for human spaceflight.

HEBI Robotics: Modular series elastic actuators (SEAs).

PROBABILISTIC CT SCAN SEGMENTATION TO DYNAMICALLY GENERATE FEA MODELS OF THE HUMAN FEMUR

LONG-DURATION SPACEFLIGHT IS DETRIMENTAL TO BONE HEALTH

- 0.4-2.7% monthly volumetric bone mineral density (vBMD) loss.
- Resistive exercise counters effects of microgravity.
- Required frequency and duration of exercise is unclear.

Hybrid Ultimate Lifting Kit (HULK) exercise device.

FEA MODELS CAN BE USED TO CALCULATE BMD MAINTENANCE LOADS

Manual calibration results: Produces noisy output that requires additional, manual post-processing.

Voxel initialization based solely on pixel intensity: Produces heterogeneous mixture of elements that may be poorly initialized with zero stiffness.

ZIN Technologies, Inc

Desired scan processing output (hand-labeled): Segmented bone cross-section that distinguishes between cortical, trabecular, and non-bone containing regions.

Bayes' theorem.

FEATURE CLASSIFICATION ONLY RELIES ON RELATIVE LIKELIHOOD

$P(Y|X) \propto P(X|Y)P(Y)$

Bayes' theorem numerator: The conditional probability is proportional to the joint probability model.

$$P(Y = \bullet | X = \square) \propto P(X = \square | Y = \bullet) P(Y = \bullet)$$
$$\propto 0 * 0.25 = 0$$

$$P(Y = |X = |X = |X = |Y =)P(Y =)$$

$$\propto 1 * 0.75 = 0.75$$

The banana-apple universe, where 75% of all fruit are bananas.

GNB EXAMPLE: CLASSIFYING APPLES WITH INSUFFICIENT FEATURES

$$P(Y = \bullet | X = \square) \propto P(X = \square | Y = \bullet) P(Y = \bullet)$$
$$\propto 0.2 * 0.33 = 0.07$$

P(Y = |X = |X = |Y =)P(Y =) $\propto 0.8 * 0.66 = 0.53$

The banana-apple universe, where 66% of all fruit are bananas and yellow apples exist.

MORE FEATURES WITH NAÏVE ASSUMPTIONS IMPROVE ACCURACY

$$P(Y|X_1, ..., X_n) \propto P(X_1, ..., X_n|Y) P(Y)$$
Assuming statistically independent features:
$$P(X_1, ..., X_n|Y) = \prod_{i=1}^n P(X_i|Y)$$

$$P(Y|X_1, ..., X_n) \propto P(Y) \prod_{i=1}^n P(X_i|Y)$$

Given:
$$X^{new} = < X_1, ..., X_n >$$

$$\hat{y} = \underset{j \in \{1,...,J\}}{\operatorname{argmax}} \propto P(Y = y_j) \prod_{i=1}^n P(X_i^{new} | Y = y_j)$$

Naïve Bayes classifier using the maximum a posteriori decision rule: Based on the features, it is most probable that the item being classified belongs to group.

GNB EXAMPLE: CLASSIFYING APPLES WITH MULTIPLE FEATURES

$$P(Y = |X = |X = |X = |Y =)P(X = round|Y =)$$

$$\propto P(Y =) * P(X = |Y =)P(X = round|Y =)$$

$$\propto 0.66 * 0.8 * 0 = 0$$

$$P(Y = \textcircled{}|X = \fbox{}, round)$$

$$\propto P(Y = \bullet) * P(X = |Y = \bullet)P(X = round|Y = \bullet)$$

 $\propto 0.33 * 0.2 * 1 = 0.07$

The banana-apple universe, but fruits are described by color <u>and</u> shape.

GAUSSIAN DISTRIBUTION: ESTIMATING SAMPLE FEATURE LIKELIHOOD

- GNB-based approach can generate identical segmentations to manual segmentation.
- Time to segment is much shorter:
 - 10 minutes vs. 8 hours

Manual vs. Probabilistic + GUI segmentation.

STOCHASTIC MODEL PARAMETER OPTIMIZATION FOR VOLUMETRIC BONE MINERAL DENSITY MAINTENANCE

- Generated FE models are used in conjunction with computational bone model.
- Model simulates exercise-induced changes in vBMD.
- Model parameters can be tuned to individual users.
 - Model is highly nonlinear.
 - Number of parameters makes manual tuning difficult.
- Optimization can be used for automatic parameter tuning.

A schematic of the GRC-developed computational bone model.

- Model is tuned by minimizing the difference between pre- and post-"flight" vBMDs from an analog study.
- Gradient-based techniques get "stuck" in local minima.
- Stochastic methods may find better minimum.

Example schematic of stochastic optimization process over a 2D cost landscape. Black: Initial value. White: Evaluations. Red: Global optimum. Teal: Found optimum.

- As a black box, model predicts vBMD changes.
- Some resulting parameters are unrealistic.
- Model fidelity could be improved with:
 - Additional data.
 - Additional constraints.

Relative error between measured and model-predicted changes in vBMD.

MACHINE LEARNING IS CENTRAL TO GRC'S HRP EFFORT

- Probabilistic segmentation and optimization were used to create a predictive model of bone mineral density (vBMD).
- The developed model can accurately predict vBMD and inform required resistive exercise loads for vBMD maintenance.
- This information is used to develop robotic exercise devices.
 - ZIN-developed ATLAS device is currently undergoing testing at JSC.
 - Intended ATLAS goal: use on Gateway and Mars missions.
- Additional information in NASA/TM—2018-219938.

ATLAS: Simulated model (left) and hardware.

