

## AN OPTIMIZATION-BASED TOOLCHAIN FOR PARAMETRIC MECHANISM DESIGN

Alexander Schepelmann, NASA Glenn Research Center, 21000 Brookpark Road, Cleveland, Ohio, 44135, USA - -

- Design-build-test approaches for spaceflight hardware are resource intensive and can produce suboptimal designs.
- **Virtual design approaches** that couple machine learning with high-fidelity simulation could reduce the need for iterative protoyping, accelerate the engineering design cycle, and reduce cost.
- This work presents a modular NASA-developed **toolchain to optimize hardware mechanisms** virtually using numerical optimization and multi-body physics simulation.

**TOOLCHAIN OVERVIEW** 



The toolchain:

- Enables multi-objective optimization.
- Generates **parametric CAD files** that can be further post-processed by an end user.
- Is expandable to optimize full systems and nonmechancial parameters such as control variables.

ONI CHAIN VALIDATION



D WHEEL OPTIMIZATION





- The toolchain was used to **optimize the geometry of a rigid wheel** traversing a 5 degree incline of GRC-1 simulant.
- **Grouser number and height** were optimized to achieve maximum travel distance over 60 seconds of simulation time.
- The toolchain finds **the optimum parameter combination** within the search space using a discrete optimizer.
- A wheel prototype is being manufactured to validate the wheel's performance on a new NASA-developed tesbed.



OPTIMIZED WHEEL DESIGN



GLENN RESEARCH CENTER'S ROBOTIC MECHANISM TESTBED

- A. Tasora et al. Chrono: An open source multi-physics dynamics engine. High Performance Computing in Science and Engineering Lecture Notes in Computer Science, Springer, 2016.
- N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in evolution strategies. *Evolutionary Computation* 9(2).

