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INTRODUCTION

FINITE ELEMENT MODEL GENERATION

Prolonged microgravity exposure disrupts natural bone remodeling

processes and can lead to a significant loss of bone strength,

increasing injury risk during missions and placing astronauts at a

greater risk of bone fracture later in life. Resistance-based

exercise during missions is used to combat bone loss, but current

exercise countermeasures do not completely mitigate the effects

of microgravity. To address this concern, we are working to

develop a personalizable, site-specific computational modeling

toolchain of bone remodeling dynamics to understand and

estimate changes in volumetric bone mineral density (vBMD) in

response to microgravity-induced bone unloading and in-flight

exercise.

Figure 7: vBMD relative error for unloaded and 

loaded remodeling simulations.  

Figure 8: Predicted and optimized femoral head force to achieve 

post-study vBMD values of exercising subjects.
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Figure 5: Femoral head joint force and stride period regression 

curves for estimating loading and DLS parameters.

Figure 6: Programmatically generated femur finite 

element model used for force optimizations.

RESULTS AND DISCUSSION

Figure 3: Mechanostat model. Figure 4: Computational bone remodeling model schematic.

Figure 2: Computational bone remodeling model state variables.

Personalized finite element (FE) bone models are procedurally

generated by combining user-guided pre- and post-processing

steps with a probabilistic classification scheme to identify bone

containing pixels in input Digital Imaging and Communications in

Medicine Computed Tomography (DICOM CT) image stacks.

Classification is performed on a three dimensional user-specified

image region of interest (ROI), whose size and position can be

modified using buttons in a graphical user interface (GUI) (Fig. 1).

Classification can be further constrained by selecting groups of

pixels within this ROI using a binary mask, whose limits can be

adjusted via sliders in the GUI. This mask is then processed using

an image morphology heuristic to ensure continuity of pixels within

the mask.

Masked pixels are segmented into three classes (cortical bone,

trabecular bone, and other) using a Gaussian Naïve Bayes

classifier [1]. This classifier uses Bayes’ theorem to determine

what class 𝑌 = 𝑦𝑗 a sample most likely belongs to based on a

vector of features 𝑿 = 𝑿𝒊 =< 𝑥1, 𝑥2, … , 𝑥𝑛 >, and takes the form

𝑃 𝑌 = 𝑦𝑗 𝑿 = 𝑿𝒊) =
𝑃 𝑿 = 𝑿𝒊 𝑌 = 𝑦𝑗 𝑃(𝑌 = 𝑦𝑗)

𝑃(𝑿 = 𝑿𝒊)

Each feature in 𝑿 is “naïvely” assumed to be conditionally

independent of other features, allowing the conditional probability

model to be rewritten as

𝑃 𝑿 = 𝑿𝒊 𝑌 = 𝑦𝑗 =ෑ

𝑘=1

𝑛

𝑃(𝑿𝒊 𝑘 = 𝑥𝑘|𝑌 = 𝑦𝑗)

After computing the relative likelihood that a pixel belongs to each

class, it is assigned a label using the rule

𝑌𝑛𝑒𝑤⃪ arg max
𝑦𝑗

𝑃(𝑦 = 𝑦𝑗)ෑ

𝑘=1

𝑛

𝑃(𝑿𝒊 𝑘 = 𝑥𝑘|𝑌 = 𝑦𝑗)

After classification, a post-processing heuristic is applied to

labeled pixels to ensure that their locations are physiologically

feasible and that they will generate a continuous two-material FE

model. After optional user-guided post-processing, a standalone

NASTRAN FE model is then generated from the segmentation,

whose material properties are initialized from CT scan pixel

intensities using the method described in [2].

Figure 1: FE generation GUI and probabilistic classification results. 

Red: User-specified ROI.  Blue: Identified cortical bone.  

Green: Identified trabecular bone.
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The computational bone model simulates bone remodeling dynamics to capture bone loss trends in microgravity. Specifically, the model is

designed to understand and estimate site-specific changes in vBMD in response to microgravity-induced bone unloading and in-flight exercise,

which in turn affects bone material properties and bone strength. The model involves three major bioscience areas: removal and replacement of

bone packets via the bone remodeling process, mechanotransduction, and cellular dynamics physiology. Cellular dynamics are described via

state variables that drive bone resorption and formation rates of change (ROCs) through a set of coupled differential equations (Fig. 2). These

rates are influenced by loads applied to the bone through a mechanostransduction model (Fig. 3), which couples FE simulations that model in-

flight exercise with the cellular dynamics model to form the computational bone remodeling model. A schematic of this model is shown in Figure 4.

The toolchain is evaluated against data from a 70-day head-down-tilt bed rest study by assessing the model’s ability to predict post-study cortical

and trabecular vBMD of participants who did and did not perform exercise [3]. Exercises performed during the study were consistent with NASA’s

iRAT regimen, an exercise protocol designed to maintain vBMD during spaceflight. For analysis, the net effect of this protocol is modeled as a

single daily load stimulus (DLS) exercise needed to maintain bone health – walking 5,000 steps per day at a speed of 5 km/h – whose net stress 𝑆 is

𝑆 =
𝑗=1

𝑛

ln(1 + 𝑁𝑗) ത𝜎𝑗𝑓𝑗

where 𝑁𝑗 is the number of repetitions of exercise 𝑗 performed with a frequency 𝑓𝑗 and ത𝜎𝑗 is the mean exercise stress. To account for subject

anthropometry, which affects force magnitudes during walking, regression curves were generated from publicly available data to estimate

femoral head and greater trochanter forces based on subject mass, stride length, and walking speed (Fig. 5) [4]. FE analysis is used to simulate

exercise-induced bone loading. Forces are applied to a representative FE model of the femur generated using the method described previously

(Fig. 6). The model’s predictive ability was assessed by comparing the regression-derived maintenance force to a force 𝐹 optimized as

𝐽 𝐹 = 𝛼 𝜌𝑄𝐶𝑇,𝑠𝑖𝑚
𝑐𝑜𝑟𝑡 − 𝜌𝑄𝐶𝑇,𝑚𝑒𝑎𝑠

𝑐𝑜𝑟𝑡 2+ (1 − 𝛼) 𝜌𝑄𝐶𝑇,𝑠𝑖𝑚
𝑡𝑟𝑎𝑏 − 𝜌𝑄𝐶𝑇,𝑚𝑒𝑎𝑠

𝑡𝑟𝑎𝑏 2

where 𝜌𝑄𝐶𝑇,𝑠𝑖𝑚
𝑐𝑜𝑟𝑡 , 𝜌𝑄𝐶𝑇,𝑠𝑖𝑚

𝑡𝑟𝑎𝑏 , 𝜌𝑄𝐶𝑇,𝑚𝑒𝑎𝑠
𝑐𝑜𝑟𝑡 , and 𝜌𝑄𝐶𝑇,𝑚𝑒𝑎𝑠

𝑡𝑟𝑎𝑏 are the simulated and measured post-study vBMDs, and 𝛼 is the ratio of cortical elements to

the total number of elements in the representative two-material FE model of the femur.

The developed toolchain provides insight into the amount of

exercise stimulus needed to minimize bone loss, and can create

subject-specific bone models that are potentially useful for

quantifying the amount of exercise stimulus needed to mitigate

vBMD decline during spaceflight.

Specifically, the computational bone model is able to predict post-

study cortical and trabecular vBMD of control subjects who did not

perform exercise with a mean percent error (MPE) of -0.61± 3.27%

and -9.43 ± 10.18%, respectively. For subjects who performed

exercise, post-study vBMD values predicted using the toolchain

show convergence during optimization, achieving cortical and

trabecular MPEs of -0.30 ± 1.63% and -1.16 ± 2.73%, respectively,

though optimized forces were lower than regression-predicted

maintenance forces for the majority of subjects. While all

optimized forces were greater than zero, indicating that the model

captures the effects of performing exercise, the MPE between

optimized and regression-predicted forces is -68.34 ± 32.32%.

The discrepancy between regression-predicted and optimized

forces could result from several sources. First, while vBMD values

converged during optimization, cortical and trabecular values are

not directly coupled. In cases where the optimized force were near

zero, the optimization favored one quantity over another, and

therefore likely terminated at a local minimum. This adversely

affected the final value of the optimized force. To address this

issue, we plan to conduct further studies that couple cortical and

trabecular vBMD densities by first converting these quantities to a

single bone densitometry (DXA) value. Next, regression equations

used to predict forces on the femur during walking were based on

data from a single subject. As a result, forces predicted by the

regression may be artificially high. Data from additional subjects

will need to be incorporated into the regression to investigate this

phenomenon. Finally, all data was analyzed using a representative

FE model and the same computational bone model parameters for

each subject. To address this issue, subject-specific CT data and

additional work to investigate how model parameters are affected

by subject-specific body anthropometry are necessary.


