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Abstract

Prolonged microgravity exposure disrupts natural bone remodeling processes and
can lead to a significant loss of bone strength, increasing injury risk during missions
and placing astronauts at a greater risk of bone fracture later in life. Resistance-
based exercise during missions is used to combat bone loss, but current exercise
countermeasures do not completely mitigate the effects of microgravity. To address
this concern, we present work to develop a personalizable, site-specific computa-
tional modeling toolchain of bone remodeling dynamics to understand and estimate
changes in volumetric bone mineral density (BMD) in response to microgravity-
induced bone unloading and in-flight exercise. The toolchain is evaluated against
data collected from subjects in a 70-day bed rest study and is found to provide
insight into the amount of exercise stimulus needed to minimize bone loss, quan-
titatively predicting post-study volumetric BMD of control subjects who did not
perform exercise, and qualitatively predicting the effects of exercise. Results sug-
gest that, with additional data, the toolchain could be improved to aid in developing
customized in-flight exercise regimens and predict exercise effectiveness.

1 Introduction

Prolonged microgravity exposure during long-duration space missions can have detri-
mental effects on astronaut bone health (Zérath, 1998)(Vico et al., 2000)(Sibonga
et al., 2007a). Weightlessness experienced by flight crews during extended space-
flight results in skeletal unloading, which disrupts natural bone remodeling processes
experienced in a 1 g environment (van Loon et al., 1996, Chapter 5). This lack of
mechanical stimulus on weight-bearing bone sites triggers bone resorption and can
lead to a 0.4-2.7% loss of volumetric bone mineral density (BMD) per month, which
lowers bone strength and increases in-flight injury risk (Keyak et al., 1994)(Lang
et al., 2004)(Nelson et al., 2009). Furthermore, astronauts who returned from long-
duration missions could take up to 9 months to restore 50% of lost bone, with full
volumetric BMD and bone strength recovery not being observed 1 year after mission
conclusion (Lang et al., 2006)(Sibonga et al., 2007b). Therefore spaceflight-induced
bone loss perhaps permanently increases post-flight injury risk.

Performing resistance exercise during spaceflight can stimulate bone formation
(Goodship et al., 1998)(Shackelford et al., 2004)(Orwoll et al., 2013). A comparative
study by Smith et al. (2012) analyzed exercise and dietary data for 13 astronauts fly-
ing International Space Station (ISS) missions between 2006 and 2009. The authors
showed that, in conjunction with an appropriate in-flight diet, individuals who per-
formed adequately varied resistance exercise of sufficient magnitude returned from
4 to 6 month space missions without a significant change in bone mass and BMD
compared to pre-flight values in most bone regions. Individuals who instead partic-
ipated in an exercise regimen with less variation saw a decrease in both bone mass
and BMD compared to pre-flight values, which demonstrates that subject-specific
exercises, combined with personalized nutrition programs, can mitigate astronaut
bone loss during long-duration missions.
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To minimize astronaut risk in- and post-flight, NASA’s Cross-Cutting Com-
putational Modeling Project aims, in part, to create predictive models of bone
strength that could be used to assess bone health and inform personalized exer-
cise countermeasures for crew members on long-duration space missions (White and
McPhee, 2007). Previous work investigated the creation of a computational model
that combined existing knowledge of cellular and mechanotransduction dynamics
to simulate the effects of microgravity on cortical and trabecular bone, to pro-
vide quantitative analysis of bone mass and calcium levels during spaceflight and
post-mission recovery, and to probabilistically asses bone fracture risk (Pennline,
2009)(Chang and Pennline, 2013)(Sibonga et al., 2017)(Nelson et al., 2009). Subse-
quent work focused on incorporating finite element (FE) methods into this compu-
tational model with the intention to capture changes in BMD and elastic modulus
resulting from in-mission exercises performed by astronauts on the ISS (Werner
and Gorla, 2013)(Pennline and Mulugeta, 2014a). This paper builds on this work,
and presents efforts to develop a personalizable, site-specific computational model-
ing toolchain of bone remodeling dynamics to understand and estimate changes in
volumetric BMD in response to microgravity-induced bone unloading and in-flight
exercise. In this toolchain, pre-flight bone densitometry scans are processed using a
Gaussian Naive Bayes (GNB) classifier to create personalized FE models of an as-
tronaut’s skeleton and to initialize a computational bone model that simulates bone
dynamics at the bone remodeling level. The FE and computational models are then
executed iteratively for the duration of simulated spaceflight to propagate model
parameters. Virtual loads applied to the generated FE models simulate the effects
of exercise and influence the modeled mechanotransduction dynamics by affecting
the rate of bone remodeling.

The rest of the paper is organized as follows: In section 2 we present the pro-
cedure used to process pre-flight densitometry data and explain how this informa-
tion is used to generate personalized FE bone models. In section 3, we summarize
the computational model, specifically highlighting improvements over the bone re-
modeling model published by Pennline (2009) and Pennline and Mulugeta (2014a).
In section 4, we present experiments to evaluate the toolchain’s ability to predict
trends of femur volumetric BMD using data collected from subjects in a 70-day bed
rest study. Results of this evaluation are discussed in section 5. We find that the
toolchain provides insight into the amount of exercise stimulus needed to minimize
bone loss, and that it can create subject-specific bone models that are potentially
useful for quantifying the amount of exercise stimulus needed to mitigate volumet-
ric BMD decline during spaceflight. Specifically, the toolchain predicts post-study
cortical volumetric BMD of control subjects who did not perform exercise with a
relative error of —0.61 4+ 3.53%, and post-study trabecular volumetric BMD with
a relative error of —9.43 £+ 11.00%. The toolchain also qualitatively predicts the
effect of exercise in mitigating bone loss, showing that post-study volumetric BMD
values can be achieved when non-zero forces are applied to the femur, though the
magnitude of these forces is lower than expected. Likely reasons for these results are
discussed. The paper concludes with a discussion of future work, summarizing how
the toolchain could be improved and further validated with additional test data, as
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well as how it could be used to develop customized in-flight exercise regimens and
predict exercise effectiveness.

2 Finite element model generation

Bone models are procedurally generated by combining user-guided pre- and post
processing steps with a probabilistic classification scheme to identify bone contain-
ing pixels in input bone densitometry scan data. This process allows a user to
quickly generate subject-specific FE models that can be used in conjunction with
the mechanotransduction model discussed in the next section to study the effects of
exercise on volumetric BMD. This section details the FE model generation process
in the context of a custom graphical-user-interface (GUI) based program developed
for this task (Fig. 1). FE models are created from input data in four steps: user-
guided pre-processing, probabilistic pixel classification, post processing, and FE
model generation. These steps are described in the following subsections.

2.1 DICOM CT image stack pre-processing

Personalized FE models are generated from pre-flight Digital Imaging and Com-
munications in Medicine computed tomography (DICOM CT) image stacks. For
a specific subject, the generated FE model and corresponding bone densitometry
data are used to initialize and propagate the computational bone remodeling model
described section 3 when simulating exercise.

After loading DICOM CT data, scan contrast and sharpness can be adjusted
to increase the intensity difference between bone- and non-bone containing pixels,
as well as to remove noise from the image that could lead to misclassification (Fig.
la). These changes are applied to the entire image stack and are modified using the
sliders located beneath the plot of CT slices. Image contrast is modified for individ-
ual pixels using MATLAB’s imadjust () Image Processing Toolbox function (The
Mathworks, Inc., Natick, MA). This function maps grayscale values in the original
image into a new range, whose lower or upper limit are defined by the “Contrast”
GUTI slider value, depending on whether the image is darkened or lightened. Darken-
ing the image modifies the mapping’s lower limit; lightening the image modifies the
mapping’s upper limit. Image sharpness is adjusted using MATLAB’s imsharpen ()
Image Processing Toolbox function, which modifies local pixel neighborhoods using
a Gaussian lowpass filter whose standard deviation is defined by the “Sharpness”
GUI slider value.

Classification is performed on a user-specified image region of interest (ROI),
whose size and position can be modified using buttons in the GUI. The classifica-
tion can be further constrained by selecting groups of pixels within this ROI using a
binary mask, whose lower and upper limit intensity threshold values can be adjusted
by the user through the “Min Mask Thresh” and “Max Mask Thresh” sliders in the
GUI. Pixels within this intensity range are then processed with a heuristic that first
removes disconnected volumes using MATLAB’s bwareaopen() Image Processing
Toolbox function, followed by hole filling operations on each ROI slice using MAT-
LAB’s imfil1() and imclose() Image Processing Toolbox functions. This results
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Figure 1.—FE generation GUI. (a) User-guided pre-processing. After loading a
DICOM CT image stack, scan contrast and sharpness can be adjusted by the user
to help the probabilistic classifier more easily distinguish between bone and non-bone
pixels. The right slider can be used to scroll through each slice of the image stack. (b)
Probabilistic classification results. Classification is performed on pixels in the user-
specified ROIL. After automated segmentation, user-guided post processing can be
performed within the GUI prior to generating the mesh in order to isolate individual
bones and correct misclassifications. Red: User-specified ROI. Blue: Identified
cortical bone. Green: Identified trabecular bone.
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in a binary mask that approximately captures the desired bone-containing region in
the image, decreasing the amount of required post processing after classification.

2.2 Probabilistic scan segmentation

CT scan data is automatically segmented using a probabilistic classification scheme.
This scheme assigns data in the DICOM image stack to one of three classes: cortical
bone, trabecular bone, and non-bone. Automated processing algorithms have pre-
viously been used for segmentation tasks involving bone, as they reduce labor, time,
and segmentation variability (Folkesson et al., 2007)(Malan et al., 2013). Specifi-
cally, data is categorized using a Naive Bayes classifier whose likelihood of features
are assumed to follow a normal distribution, a scheme colloquially known as GNB
(John and Langley, 1995)(Mitchell, 1997). GNB classification is widely used for im-
age labeling and segmentation tasks, including medical images (Wang and Summers,
2012). For completeness, we summarize this classification scheme below.

Bayes classifiers are a family of probabilistic classification schemes that use
Bayes’ theorem to determine what class Y = y; a sample most likely belongs to
based on a vector of features X =< z1,z3,...,z, >= X; (Bishop, 2006). Bayes’
theorem takes the form

P(X = X;|Y = y)) P(Y = y;) (1)
P(X =X;)

where P(Y = y;|X = X) is the posterior probability that a sample Y belongs to
class y; given that the feature vector X is equal to Xj, P(X = X;|Y = y;) is the
conditional probability that the feature vector X = X; was observed given that a
sample Y belongs to class y;, P(Y = y;) is the prior probability that a sample Y
belongs to class y;, and P(X = Xj) is the probability that a feature vector X equals
X;.

In Naive Bayes classification, each feature k£ in X is “naively” assumed to be
conditionally independent of every other feature, meaning that the conditional prob-
ability model can be rewritten as a product of independent probabilities over every
feature as

P(Y =y|X =X;) =

n

P(X =X;|Y =y;) =H k) = zi|Y = y;) (2)

where xj, is the specific value of the individual feature. The denominator in equa-
tion 1 is independent of the class label, and is therefore constant for all y;. Since
classification is only concerned with the relative likelihood that a sample belongs
to a given class, it is therefore possible to calculate that a given input vector XV
most likely belongs to the class Y"* using the rule

n
Y +— argmax P(Y H = z;Y =y;) (3)
Yj k=1

Like its name suggests, a GNB classifier assumes that the likelihood of each
feature in X; follows a normal distribution, which is defined by feature k’s mean
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and variance for a given class, y. and o2, respectively. This allows the likelihood
for each feature for each class to be calculated as

Tp — e )?
PO(K) = il =) = ey (-, 4 ) a

Labeled training data is required to calculate . and o2. After transforming

input data into the appropriate feature space, these quantities are calculated as

1 m
1=

and

1 m
ot = 3 (i~ o)’ (6)
mia
where x; are the individual feature values belonging to a given class, and m is the
total number of feature values for a given class. Similarly to equation 5, the prior
probability for each class can be calculated as the quotient between the number of
samples belonging to class Y = y; and the total number of samples in all classes.

2.3 Post processing and model generation

After probabilistic classification, a post processing heuristic is applied to identified
cortical and trabecular pixels. The heuristic ensures that cortical and trabecular
locations are physiologically feasible, and that identified pixels will generate a con-
tinuous two-material FE model. A cortical outer boundary for pixels in each CT
slice is first created by performing an image erosion on the binary mask generated
in section 2.1 using MATLAB’s imerode () Image Processing Toolbox function and
subtracting it from the original mask. The pixels under the resulting mask are then
added to the set of cortical labels identified via the probabilistic classification scheme
described in section 2.2. Thereafter, trabecular labels are assigned to the remaining
pixels in the interior of the original mask.

The resulting set of labeled pixels may contain misclassifications or multiple
bones. To correct classification errors and isolate bones of interest, user-guided post
processing can be performed within the GUI by clicking the “Edit Bone Layers”
button. This launches a new window, where labeled pixels in the user-specified ROI
can be reassigned to one of the three classes.

After post processing, a standalone NASTRAN (MSC Software, Newport Beach,
CA) FE model, composed of six-sided solid element connection CHEXA elements,
can be generated from the segmentation by clicking the “Generate Mesh” button.
Model element spacing is extracted from metadata contained in the DICOM CT
image stack. Material properties for each element are then calculated based on
identified bone labels and corresponding pixel intensities of unadjusted images in
the DICOM image stack using the following procedure: volumetric BMDs (pgcr)
for each element are first calculated from CT scan Hounsfield unit intensity values
(H) as
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PQCT = oH + ,B (7)

where the coefficients a and 8 are calculated from a linear regression of calibration
phantom densities present in the CT scan (Keyak et al., 1994). Due variability
in intensity values resulting from scan parameters, regression coefficients should be
recalculated for each CT scan (Giambini et al., 2014). Next, the mean pgcr values

for cortical (pgriy) and trabecular (p5&) bone are calculated using the identified

bone labels, which in turn are used to calculate a mean ash density (ﬁg‘;’;f and ﬁZ’;‘}Zb)

for each type of bone as

P = 0.88Tp¢5¢ir + 0.0633 (8)
Pl = 0.887p5% + 0.0633 )

where the constants were determined from load tests of human cadaveric proximal
femora (Keyak et al., 2005). Corresponding mean elastic modulus values for cortical
and trabecular bone (E°" and E*) are finally calculated as

Ecort — 149005007}"1151.86 (10)
as
Et?“ab — 14900ﬁ22%b186 (1 1)

with regression coefficients again calculated from load tests of cadaveric femora
(Keyak et al., 2005). Mean shear moduli (G and G*"%) are calculated for each
bone type as

Gcort — Ecort/(z(l 4 I/)) (12)
Gcort — Etrab/(2(1 + I/)) (13)

assuming a Poisson’s ratio of v = 0.3.

3 Computational bone remodeling model

The computational bone model simulates bone remodeling dynamics to capture
changes in volumetric BMD in response to skeletal unloading with the goal of cap-
turing bone loss trends in microgravity. Specifically, the model is designed to under-
stand and estimate site-specific changes in volumetric BMD in response to skeletal
unloading and exercise-induced skeletal loading, which in turn affects bone material
properties and bone strength. Using long-duration bed rest as an analogue to micro-
gravity, the generated FE models described in the previous section can be coupled
with the bone remodeling model to predict cortical and trabecular volumetric BMD
in the presence of skeletal unloading and resistive exercise performed in a 70-day
bed rest study. This section summarizes the computational bone model, highlight-
ing extensions of the model originally published by Pennline (2009) and Pennline
and Mulugeta (2014a), and discusses how it is integrated with generated FE models
to propagate model parameters and simulate the effects of exercise-induced skeletal
loading.
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3.1 Computational model

The computational model is designed to simulate changes in bone volume frac-
tion (BVF) over time by modeling osteoblast and osteoclast cell dynamics, which
form and resorb bone, respectively (Bronner and Worrell, 1999). Specifically, cel-
lular dynamics equations developed for this model describe the bone remodeling
process accomplished by groups of osteoblasts and osteoclasts working together in
so-called bone remodeling units (BRUs). During this process, retired osteoblasts,
called osteocytes, are permanently captured in bone, after which they are believed to
function as the primary mechanosensors in bone structure (Bonewald, 2006). BRUs
proceed through ordered stages of activation, resorption, reversal, and formation,
followed by a quiescent stage (Parfitt, 1988). While osteoclast and osteoblast lin-
eages each include distinct cell types exhibiting varying levels and requiring multiple
steps of differentiation (Ott, 2010), the model developed here uses a simplified ap-
proximation. Cellular processes such as differentiation, apoptosis, bone formation,
and bone resorption occur over several days or months (Eriksen, 2010), while bio-
chemical concentrations tend to establish equilibrium on a much shorter timescale
(Lemaire et al., 2004). Specifically, receptor-ligand binding reactions are assumed
to occur much faster than respective changes in cell numbers (Pivonka et al., 2008).
Therefore, we here assume quasi-steady-state binding of ligands to receptors and
associated signaling events and effects leading to cell responses.

The net effect of the interaction between the osteoblast and osteoclast cells can
be related to the change in BVF through the equation

dBVF . . B(t)  .C()
dt —Affa?O_ArfaTO (14)

where Ay is the area of bone formed per BRU in a cross section of a volume element,
A, is the area of bone removed per BRU in a cross section of a volume element, f,, is
the activation density in a steady state expressed as number of BRUs activated per
day per area, B is the population of osteoblasts, By is a reference osteoblast popula-
tion, C' is the population of osteoclasts, and Cj is a reference osteoclast population.
In the developed model, equation 14 and the governing equations described below
are identical for cortical and trabecular bone regions. Behavioral differences for both
types of bone occur due to numerical differences of Ay and in the computation of
fa, which is calculated based on formulas developed for each bone type (Hernandez
et al., 1999). Physiologically, significant changes in BVF should increase or decrease
fa. The model therefore assumes the instantaneous value of activation density f, to
be proportional to the fractional change in BVF relative to its initial value BV Fy

BVF(t) -
«= Hom 1
fa= "BvE, (15)
and substitutes this expression into equation 14, yielding
dBV F BVF B(t BVF

a U BVE " BV Fy

Osteoid, the collagen matrix produced by osteoblasts, gradually mineralizes fol-
lowing formation, over a period that can vary from 6 months to 1 year (Parfitt,
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1988). During and immediately after peak formation, a region of bone is therefore
expected to exhibit a lower than usual degree of mineralization. The model con-
siders bone volume as the sum of mineralized and osteoid volume. Therefore, BVF
can be considered the sum of mineralized volume fraction M and osteoid volume
fraction O

BVF=M+0 (17)

The model relates BVF, M, O, and volumetric BMD using the relationship devel-
oped by Pennline and Mulugeta (2017). With this method, the initial values BV Fy,
My, and Og are calculated from initial volumetric BMD values extracted from input
CT image stacks as explained in section 2. By respectively modeling the rate of for-
mation 7y and rate of resorption 7, as Ay - f, and A, - f,, the differential equations
governing osteoid and mineralized BVF's can be written as

dO B C( 0 )—rmO a8)

dat B, "o \o+ M
dM C M
dt”mo‘”oo<0+M> (19)

where r,, is the bone mineralization rate. This rate can be obtained through the
initial values BV Fy, My, and Og and applying steady-state conditions to equations
18 and 19, yielding the relationship

My
m - T SN s 2
rmOo =T <OO +MO> (20)

The cellular dynamics equations model rates of change of active osteoclasts, active
osteoblasts, and committed precursors of active osteoblasts called responding os-
teoblasts (B,) as a set of coupled differential equations. Equations in this model are
adapted from Lemaire et al. (2004) and can be written as

dB,

i Dp,Ergr — DB, ((1 — Ergr) + Epce) B, (21)
dB
i (1= Ergr)+ Epce)Dp, B, — (1 — Epru)ApB (22)
dC
i ErrDcp — ErarAcC (23)

where variables represent the following quantities: Dp,, is the differentiation rate
of osteoblast progenitors, Dp, is the differentiation rate of responding osteoblasts,
D¢, is the differentiation rate of osteoclast progenitors, Ergr is the TGF — B
receptor occupancy ratio, Epgg is prostaglandin PG Es receptor occupancy, Eprg
is parathyroid hormone receptor occupancy, Ery, is the RANKL receptor occupancy
ratio, Ap is the rate of elimination of B, and A¢ is the rate of elimination of C
(apoptosis). Initial values of By and Cj are obtained by solving the steady-state
case of the nonlinear system; in these equations the expression for Ergr allows the
system to be uncoupled. This three variable model is a specific case of one of two
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general mathematical models that have been identified as capable of describing the
process of bone remodeling (Zumsande et al., 2011).

The above model extends the work by Lemaire et al. (2004) by adding two
mediators, PGE> and nitric oxide (NO), which contribute to balance between re-
sorption and formation via cell expression in response to skeletal loading. This
receptor-ligand interaction can cause cell proliferation while other interactions si-
multaneously inhibit proliferation dynamics. For example, the factor (1 — Eppp)
in equation 22, which is not present in Lemaire et al. (2004), has been introduced
here to comply with experimental evidence that PTH exhibits an inhibitory effect
on the apoptosis of active osteoblasts (Jilka et al., 1999)—as Eprp increases, apop-
tosis of B decreases. The basic biological assumption is that cell proliferation is
proportional to receptor occupancy. The model assumes that the biochemical con-
centrations establish equilibrium immediately, relative to the much slower timescale
at which cellular populations evolve. The steady-state or equilibrium value is ob-
tained by equating the appropriate governing differential equation to zero under
the assumption that the current cellular populations are fixed. Receptor occupancy
ratios, a real number between 0 and 1, represent the proportion of ligand receptors
that are occupied. The remainder of this section details the derivation for terms in
equations 21 to 23, concluding with an explanation of how they relate to skeletal
loading experienced during exercise.

3.1.1 Parathyroid Hormone

Ignoring osteoblastic interactions, the interaction of PTH with its receptor is re-
garded as an ordinary chemical reaction according to

P+P, T‘% P, .P (24)
6

where P (pM) is the concentration of unbound PTH, P, (pM) is the concentration
of unoccupied PTH receptors, P, - P (pM) is the concentration of the complex
between PTH and its receptor, and k5 (1/pM/day) and k¢ (1/day) are the rates of
the forward and reversion reactions, respectively. Assuming the law of mass action,
we deduce from the reaction above a system equivalent to that provided by Lemaire
et al. (2004), but with slightly different notation:

dP
o =St I+ kel P - ksP(P' — P.-P) —k,P (25)

dP, - P
= ksP(P' — P,-P)—k¢P, - P (26)

Here, PI' = P, + P, P is the total concentration of PTH receptors that are fixed and

determined by current cellular populations of B and Bpg, S, and I, (pM/day) are the

basal rate of synthesis and the injection rate of PTH, respectively, and k, (1/day)

is the relative rate of decay of PTH. At equilibrium, the receptor occupancy ratio

of PTH is given by

P.-P Sp+ 1,
P Syt Iy + kgt

Epry = (27)
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3.1.2 RANK/RANKL/OPG pathway

The treatment of the RANK/RANKL/OPG pathway is a variation on the model
of Lemaire et al. (2004) with the addition of the effects of NO. The interactions
between RANK (K), RANKL (L), OPG (O), the RANK-RANKL complex (K - L)
and the OPG-RANKL complex (O - L) can be summarized by

O+1 ‘% oL (28)
2
ks
K+L—K- L (29)
4
This leads to the system
do
E:po—kloL-i-kQO-L—d@ (30)
dO - L
G =ROL—}0-L (31)
dL
%:pL—k10L+kQO-L—k3KL+k4K-L—dL (32)
dK - L
T ksKL — k4K - L (33)

Following the original work, the concentration K of RANK is assumed to be a fixed
constant. The variations that come into play are the alternative expression for the
anti-proliferative effect of a ligand receptor complex and the effects of NO (using
the Hill function derived in section 3.1.4) on the production and degradation rates
of OPG and RANKL. For OPG, the production rate pp and degradation rate do
are proposed as

po =roB(1 — Epru)Eno + lo (34)
do = koO (35)
where 7o (1/day/cal) is the maximum rate of production of OPG per active os-
teoblast, Fno is the Hill function describing the intensity of the effects of NO (sect.
3.1.4), Io (pM/day) is the rate of injection of OPG, and ko (1/day) is the relative
decay of OPG. This yields the formula
Io

.
O =-2B(1 - Eprg)Eno + -2 (36)
ko ko

The way the factor Eno is used is motivated by the experimental results of (Fan
et al., 2004), in which it is suggested that NO stimulates the production of OPG
and inhibits the production of RANKL by affecting transcription. So with regard
to RANKL, the production rate p;, and degradation rate dj, can be given by

L+O-L+K-L
NLR

dy = kp L (38)

)EPTH(l_ENO)+IL (37)

pr =r B (1 —
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where 7, (1/day/cell) is the maximum rate of production of RANKL per responding
osteoblast, I, (pM/day) is the rate of injection of RANKL, Ny, is the maximum
number of RANKL molecules that can be attached to the surface of each responding
osteoblast, and kr (1/day) is the relative decay rate of RANKL. Note that the
expressions in equations 37 and 38 are different from those of Lemaire et al. (2004).
Changes to these equations include interchanging the roles of B and Bp as suggested
by Pivonka et al. (2008), as well as the inclusion of the inhibitory effect of NO on
the production of RANKL. In the pseudo-steady state, this results in the following
RANKL concentration and RANK receptor occupancy ratio:
r.BrEpru(l — Eno) + 11,

L= k1 k3 L <39)
(1+ 20+ 2K)Epru(l — Eno) + ki

Epp=—— =1L (40)

3.1.3 Transforming Growth Factor Beta (T'GF — ()

Of the three isoforms of TGF — 3, TGF — (1 is the most abundant isoform, being
one of two of the largest sources, and is the isoform involved in the bone remodeling
process (Janssens et al., 2005). As a ligand, the binding with its receptor, treated
as a chemical reaction, follows the analysis for PTH and its receptor and leads to
the occupancy ratio given by

Sy Z T T

Sr+kriE L4+ T+ T+158

where T is the concentration of unbound TGF-8;, Sy (pM/day) is the rate of
synthesis of TGF-51, kr is the degradation rate (1/day), and k7 and kg are the
rates of the forward and reverse reactions, respectively. Trabecular receptors also
have the highest affinity for TGF-3; with a dissociation constant (kg/k7) of 15.8£7.6
pmol/l (Tripathi et al., 1993).

In the model, the primary source of available TGF-g; is assumed to be released
during the resorption phase of the bone remodeling process (Roodman, 1999). As
a result, TGF-3; concentration is modeled as

Sp = TBP:&Wg -10° (42)
Co

where Tp (pmol/g)is the concentration of TGF-f; stored in bone tissue, p; (g/cc) is
the true density of bone (Hernandez et al., 2001), and r,.C/Cj is the rate at which
bone is resorbed divided by the total volume of the domain. In order for T to
represent the average daily concentration, k7 is set to 1. The expression for TGF-
(1 concentration presented in equation 42 is significant for two reasons. First, the
equation closely connects cell dynamics to resorption and formation rates presented
in equation 14. Second, it allows steady-state values of By, Cy, and B, to be solved
for directly, as this term allows the cellular system of equations to decouple.

NASA/TM—2018-219938 (Corrected Copy) 12



3.1.4 Nitric Oxide (NO)

NO, as well as PGEs, play an anabolic role in bone remodeling. Although NO
is not a ligand, an effector expression that acts in a similar way to how a recep-
tor occupancy ratio acts in the system of equations fits the cell proliferation/anti-
proliferation assumption. To begin, the model assumes the following differential
equation to describe the concentration of NO (IV):

dN

— =Sy —dyN 43

ar NN (43)
where Sy defines the rate of cell expression of NO according to the level of bone
apposition or resorption suggested by the daily strain € in Frost’s Mechanostat

Theory and dy (1/day) is the relative degradation rate. Sy is given by
SN =pnfs(e)YuBVF (44)

where py is the rate per cell, fs(e) is a functional relationship that mathematically

describes the apposition or resorption of bone in response to the effect of daily

strain resulting from exercise-induced bone loading, and Yy is the osteocyte density.

Combining equations 43 and 44 and assuming a pseudo-steady-state of dN/dt = 0

yields

pnfs(€)YyBVF
dn

In one experimental study, the dose-dependent effects of NO on RANKL protein
levels appear to follow an approximate log-linear relationship (Fan et al., 2004).
To capture this, the model uses a Hill function Eno, which behaves similar to an
occupancy ratio:

N = (45)

N @
ENo = N M- ~ ROBE) + (5 1) (46)

where Ny is the equilibrium coefficient of NO at ¢ = ¢y and BVF=BVF,. By
construction, 0 < Eypo < 1 and g € (0,1) is the equilibrium value of Enxo. By
equating a factor of 10 or 10? increase in N to a drop in RANKL protein level from
80% to 40% as seen in Fan et al. (2004), leads to rough estimates of B:% or Bzi.
Experiments in this model assume a value of 8 =1/5.

3.1.5 Prostaglandin E2 (PGE3)

Conducting a similar analysis to the one performed for PTH and its receptor leads
to a PGE5 occupancy ratio of

Sa
Epgp = ————— 47
Sa + ka %190 (47)

where kg (1/pM/day) and kg (1/day) are the rates of the forward and reverse
ligand-receptor reaction, kg (1/day) is the rate of decay of PGEy and S¢/k¢ is the
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Figure 2.—Functional relationship s between the mechanical strain ¢ and bone
apposition-resorption dynamics described by Frost’s mechanostat theory.

concentration of PGFE5. Similarly to the synthesis rate for NO, the synthesis rate
for PGF, is given by

Se = pc fs(€)YaBVF (48)
where pg is the rate of PG Es per cell and Yj is the osteocyte density. Dividing the
numerator and denominator of equation 47 by paYyBV Fy leads to

fs(e BVF/BVE,

Epap = 49
PGE = ¢ () BVF/BVF, + Gq (49)

where bk
G _ __ hGho 50
47 pakeYaBV Fy (50)

The extent of binding of PG FE> human plasma proteins was found to be 73% Raz
(1972). If this value is used as the reference equilibrium value of Epgp then G4 =
(1 -0.73)/0.73.

3.1.6 Daily mechanical strain

Exercise-induced bone stresses ¢ generate strain ¢ in bones in accordance with
Hooke’s Law (Hooke, 1678). Mathematically, this relationship can be written as

o= Fe (51)

where E is the bone’s elastic modulus. Aggregate daily strain resulting from exercise
can be mathematically related to the apposition or resorption of bone via Frost’s
mechanostat theory (Frost, 2003) through the equation

€E— €0 |€— €

o= |

"y 1} (52)

€0 €0
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where €g represents the center of the mechanical usage window where there is phys-
iological remodeling balance and n is a parameter which can be used to adjust the
width of the apposition-resorption curve (Fig. 2). Note that in complete unloading
there is no strain, i.e., € = fs(e) = 0. In remodeling balance, € ~ ¢y and fs(e) = 1.
In general, if € is in the disuse mechanical usage window, it follows that fs(e) < 1,
and the BVF rate of change is negative. If € is within the mechanical remodeling
balance window, it follows that fs(e) ~ 1, and the rate of BVF change is zero. If €
is in the overload mechanical usage window, fs(e) > 1, and the BVF rate of change
is positive. The response from the daily strain shows its effect in the remodeling
equations through the receptor occupancy ratio of PGFE, and NO, as outlined in
sections 3.1.4 and 3.1.5.

3.2 Finite element integration

The finite element model generated via the process described in section 2 is inte-
grated with the computational bone remodeling model discussed in section 3.1 to
simulate exercise-induced bone loading. Specifically, finite element analysis (FEA)
is used to calculate exercise-induced bone stresses based on applied forces that re-
sult from various exercises throughout the simulation in order to update cortical
and trabecular modulus values and propagate remodeling model parameters.

At the beginning of the simulation, a linear static FEA is conducted in FEMAP
with NX NASTRAN 11.30 (Siemens Product Lifecycle Management Software Inc.,
Plano, TX) to calculate initial average cortical and trabecular von Mises stresses
(j) based on exercise-specific force values, subject-specific body weight, subject-
specific bone elastic moduli, and subject-specific bone shear moduli. The finite
element simulation is executed programmatically from MATLAB using the FEMAP
API compiled for Python in conjunction with a custom script written in Python 3
(Python Software Foundation, Beaverton, OR) that loads the finite element model,
assigns material properties, initializes forces and constraints on user-specified model
nodes, executes the FEA, and returns corresponding cortical and trabecular stress
values after the analysis completes.

After calculating single-cycle-induced stresses for each prescribed exercise, the
computational model described in section 3.1 then executes for a user-specified in-
terval that discretizes the total study duration, using the subject-specific parame-
ters and FEA calculated exercise-specific stresses as input. Based on the single-cycle
stresses experienced during each exercise, the model then calculates an equivalent set
of stresses for the total exercise regimen using a formula for the Daily Load Stimulus
(DLS), a relationship which quantifies the mechanoadaptive response of bones based
on mechanical stimulus experienced by bone tissue (Carter et al., 1987)(Whalen
et al., 1988). The DLS equivalent stress is calculated using a modified relationship
from an expression suggested by Turner and Robling (2003)

k
S = Zln(l—i-Nj)Oijj (53)

j=1
where S is the equivalent stress, IV is the number of loading cycles per loading condi-
tion or number of repetitions per exercise j, and f; is the frequency of repetitions for
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each exercise. Compared to other expressions for DLS (Carter et al., 1987)(Hazel-
wood et al., 2001)(Hazelwood and Castillo, 2007)(Genc et al., 2009)(Cavanagh et al.,
2010), this formulation was found to best capture characteristics of cyclic loading in
terms of stress- and strain-like quantities at specific bone sites (Pennline and Mu-
lugeta, 2014b). The equivalent stress and elastic modulus for each bone type is then
used to update cortical and trabecular strains via Hooke’s Law (Gere, 2004), which
in turn updates remodeling model parameters and cortical and trabecular elastic
moduli during the next iteration.

To account for effects of changing elastic moduli on exercise-induced stresses,
FEA is used to recalculate single-cycle stresses and in turn update DLS equivalent
stresses and strains at simulation times defined by the user-specified discretization
interval. Exercise-specific forces and FE model geometry are assumed to be constant
throughout the simulation.

4 Methods

The computational bone physiology modeling toolchain was evaluated using data
collected from a 70-day head-down-tilt bed rest study (Taibbi et al., 2016). Bed rest
studies act as an analog for spaceflight, here providing quantitative data about sub-
ject anthropometry, pre-study volumetric BMD, and post-study volumetric BMD
under experimental conditions where exercise type, frequency, and duration is strictly
controlled (LeBlanc et al., 2007)(Cromwell, 2012).

Subject-specific CT scans were not available in the data set used for analysis. As
a result, a representative, two-material FE model was constructed from pre-study
CT scan data using the procedure described in section 2, which was collected from
a subject who participated in a 17-week bed rest study (LeBlanc et al., 2007). The
scan contained no observable anomalies to adversely impact the toolchain evaluation
results. Due to limitations of available data, the same scan was used to train the
classifier and probabilistically generate the FE model in order to evaluate the func-
tionality of the toolchain. Five features were used by the GNB classifier to segment
the image after its sharpness and intensity were manually adjusted during the scan
pre-processing step: pixel color, pixel color after each image slice was blurred us-
ing a two-dimensional (2D) Gaussian filter, edge intensity, edge intensity after each
image slice was blurred using a 2D Gaussian filter, and the local standard devia-
tion at each pixel in the image slice, calculated from a 3x3 neighborhood centered
on the corresponding pixel. The Gaussian filter used to<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>