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Identification & Segmentation of Lawn Grass 

Based on Color & Visual Texture Classifiers 

 

Abstract 

By 

 

ALEXANDER SCHEPELMANN 

 

CWRU Cutter is an autonomous lawnmower which can reflexively avoid obstacles.  

While LIDAR was previously used by the robot to determine obstacle locations, the 

sensor’s price makes its inclusion in commercial versions prohibitively expensive.  

Cameras can provide similar information at drastically reduced cost, but useful 

information must first be extracted from incoming images.  This can be computationally 

expensive.  Additionally, vision-based methods can be highly sensitive to changing 

lighting conditions.  This thesis presents a method to identify grass based on color and 

visual texture classifiers for use in an outdoor environment.  Neighborhood-based color 

measurements are calculated using the HSL color model and texture measurements are 

based on edge-detection and quantified via computationally inexpensive first and second 

order statistics.  Individual measurements are then combined to create a binary 

representation of mowable terrain in an image.  Performance is quantified by measuring 

recognition performance on a set of sample neighborhoods that contains common 

backyard obstacles. 
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1. Introduction 

Autonomous personal service robots are becoming increasingly popular with 

users around the world.  After a long day of work, many people do not want to spend 

their precious free time performing menial chores that require little active thought and are 

comprised of mind-numbingly simple, repetitive actions.  With society’s increasing 

desire for efficiency and the ever-growing ubiquity of cheap technology, it makes sense 

to create low-cost robots for the home that are designed to perform very specific chores.  

Companies, such as Boston’s iRobot Corporation, have recognized this, and have built 

successful multi-million dollar businesses around supplying consumers with little 

automatons that free up their owners’ schedules.  A veritable army of Roombas now 

vacuums millions of carpets every day across the globe.   

But what about outside the living room?  While robotic vacuums keep the carpet 

presentable, homeowners still woefully trudge to their garage every week to spin-up their 

lawnmowers and manually cut their grass.  Yet, vacuuming and mowing grass are 

surprisingly similar chores.  Both require the user to fully travel over the entire operating 

surface, all the while avoiding obstacles, but getting as close to them as possible.  Using 

similar control methods as the Roomba, several companies have recently introduced 

robotic lawnmowers that seek to eliminate human interaction in this task as well.  

Unfortunately, the Roomba’s method of randomly travelling around in its operating 

environment is ill-suited for lawn mowing, since it yields a low quality of cut and cannot 

guarantee that all of the lawn is mowed before the robot’s batteries die.   
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In 2008, the CWRU Cutter (pronounced “crew cutter”) team at Case Western 

Reserve University’s Center for Biologically Inspired Robotics Research set out to create 

an intelligent autonomous lawnmower that could achieve the same quality of cut as a 

human operator.  The students demonstrated that it is possible for a robot to 

autonomously, efficiently, and safely mow in an applied environment representative of 

typical suburban yards, while achieving an aesthetically pleasing end result.  The robot’s 

performance was tested during the Institute of Navigation’s Autonomous Lawnmower 

Competition, an annual, international contest held in Dayton Ohio.  In 2008, during its 

first year in competition, CWRU Cutter finished in 3
rd

 place.  The subsequent year, 

CWRU Cutter finished 1
st
, besting six other teams. 

Unlike currently available mowing robots, which sense obstacles through direct 

contact, the first CWRU Cutter relied on a Light Detection and Ranging (LIDAR) sensor 

to safely sense obstacles from a distance and intelligently edge around them.  

Unfortunately LIDAR’s price, greater than $5000 USD, makes the sensor’s inclusion in 

commercial versions of CWRU Cutter prohibitively expensive.  Cameras, on the other 

hand, can provide a plethora of information about a robot’s operating environment at a 

fraction of the price.  However, unlike LIDAR, which natively returns the range between 

the robot and the nearest obstacle, useful information must first be extracted from 

incoming images by identifying what areas in the images are safe to drive on and what 

areas contain obstacles. 

This thesis describes a method of identifying grass in an image based on its 

perceived color and visual texture and segmenting incoming images based on these 

identifiers to differentiate between mowable terrain and obstacle locations.  Chapter 2 
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outlines a brief history of technology in currently existing autonomous lawnmowers and 

highlights their differences compared to CWRU Cutter.  An overview of digital image 

composition, color space, and visual texture follows.  Chapter 3 details how grass is 

identified in an image based on color and visual texture identifiers and discusses how 

results from multiple identifiers are combined to create a robust indication of grass 

locations in the image.  Chapter 4 discusses the methods used to quantify how functional 

each identifier is and presents the results to the reader.  Additionally, this chapter 

examines the results and suggests how individual identifiers should be pre-weighted 

before combining them to create an accurate representation of grass containing regions in 

an image.  Finally, Chapter 5 summarizes the results and presents the reader with possible 

future work that can be done to improve recognition performance. 
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2. Background 

2.1 Robotic Consumer Lawnmowers 

Since 1997, several companies have offered commercial robotic lawnmowers for 

global markets [1].  These robots detect obstacles in a similar manner to the Roomba – a 

perimeter wire is installed around permanent obstacles such as trees in the yard which 

inhibit obstacle collisions, and other semi-permanent obstacles, such as lawn chairs, are 

detected through direct contact or infrared (IR) sensors.  Relying on perimeter wires and 

IR sensors for navigation and obstacle avoidance yields several benefits, but also has 

several detriments. 

By physically installing borders into the robot’s operating environment, it is 

possible to successfully mow autonomously by employing random walking.  Random 

walking for a robotic lawnmower posits that for a finite yard space, all of the grass will 

eventually be cut as time approaches infinity.  With perimeter wires in place, it is 

impossible for the robot to leave the yard or collide with obstacles specifically outlined 

during installation.  If the direct contact or IR sensors detect an obstacle that is not 

outlined by the perimeter wire inside of the robot’s environment, current generation robot 

lawnmowers will simply turn and randomly head in another direction away from the 

sensed obstacle.  The benefits of this control strategy are that it is easy to implement and 

the robot needs few sensors, since it never needs to know its real-world position in the 

yard.  This eliminates computational complexity and brings down the overall price of the 

robot, since it does not need to have fast onboard processing to process information from 

multiple sensors.  However, this approach is also subject to many detriments. 
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First, IR sensors are not able to detect obstacles more than a half a meter away
1
.  

Therefore, obstacle detection through IR or direct contact presents serious safety hazards 

to non-outlined obstacles in the robot’s mowing environment, since the robot must first 

come uncomfortably close to an obstacle before it realizes one is there.  Additionally, IR 

sensors are extremely sensitive to changing lighting conditions, and can be blinded in 

areas of bright sunlight
1
.  As such, lawnmower manufacturers warn users to clear their 

yards of any obstacles and maintain a safe distance from the robot while it is mowing in 

their product documentation manuals [3].  

Since it is not possible to rely on IR sensors in an outdoor environment, the 

majority of lawnmower obstacle detection is accomplished via direct contact switches.  

By definition, direct contact is non-ranged and therefore it is virtually impossible for the 

robot to navigate intelligently around obstacles.  It is also possible for the mower to miss 

large patches of grass as it randomly turns away from an obstacle, which requires the user 

to re-mow their lawn after the robot has finished operating.  This results in a low quality 

of cut, since mowed lines are not parallel or in any pattern [FIGURE 1].   

                                                        
1 Based on personal testing. 
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2.2 Autonomous Vehicles 

Unlike mobile robots, autonomous vehicles are unmanned ground vehicles that aim to 

navigate real-world environments without human intervention by relying on sophisticated 

position estimation and ranged obstacle sensing techniques.  While autonomous vehicle 

history can be traced back to the simple driverless car designed in 1978 by the Tsukaba 

Mechanical Engineering Laboratory that followed white visual markers in a highly 

FIGURE 1: Cutting paths of currently available consumer lawnmowers. [3] 



15 
 

structured environment, full vehicle autonomony was not demonstrated until the 2004 

Defense Advanced Research Projects Agency (DARPA) Grand Challenge [4][5].  

The competition tasked entrants to design and build a completely autonomous vehicle 

that could successfully navigate a 150 mile desert course from Barstow, California to 

Primm, Nevada.  During the competition, vehicle localization was accomplished via GPS 

and a variety of other positional sensors, such as wheel encoders and inertial 

measurement units (IMU), while obstacle avoidance was accomplished via laser scanning 

[5].  Though the course would not be completed by a team until the following year’s 

competition, the 2004 Grand Challenge defined what future autonomous vehicles needed 

to be able to accomplish.  Instead of randomly operating within a small, highly controlled 

zone with some human interaction, autonomous vehicles need to intelligently follow 

paths in large, highly unstructured environments.  Additionally, autonomous vehicles 

need to sense obstacles from a distance and avoid them while being able to maintain their 

planned route.   

The Intelligent Ground Vehicle Competition (IGVC), founded by the Association for 

Unmanned Vehicle Systems International (AUVSI), has also championed the 

development of autonomous vehicle technology since the 1990’s [6].  While the IGVC 

course is not as massive as the Grand Challenge’s, the competition tasks university level 

engineering students to autonomously navigate a marked off-road course while 

performing increasingly complex tasks along the way [6].  Oftentimes, IGVC vehicles 

supplement laser-based ranging with computer vision to successfully identify obstacle 

and navigate around them [7]. 
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The autonomous lawnmower, CWRU Cutter, represents a convergence between 

consumer robotic lawnmower application and autonomous vehicles technology to create 

an intelligent, autonomous robot that is able to sense obstacles from a distance and mow 

in straight lines, resulting in a lawn with a comparable quality of cut that a human 

operator can achieve. 

 

2.3  CWRU Cutter 

CWRU Cutter (pronounced “crew cutter”) is an autonomous lawnmower 

designed and built by students at Case Western Reserve University’s “Center for 

Biologically Inspired Robotics Research [FIGURE 2].”  The robot is an off-shoot of 

CWRU’s involvement in the 2007 DARPA Urban Challenge and several IGVCs, and is 

more related to the university’s autonomous vehicle approaches than to currently 

available commercial robotic lawnmowers.  Yet, CWRU Cutter addresses consumer 

desire to own an autonomous lawnmower.  In this sense, the robot is meant to improve on 

currently existing, commercially available autonomous lawnmowers by creating a system 

that is able to navigate intelligently through a yard and achieve a quality of cut 

comparable to a human operator. 
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However, mowing yards is not a trivial task for robots.  Unlike the DARPA 

challenges, where courses are clearly defined in terms of GPS waypoints, or the IGVC, 

where the robot’s path is bounded by white lines, CWRU Cutter must function in an area 

where no clear physical boundary markers exist and obstacles litter its operating 

environment.  The Institute of Navigation’s (ION) “Autonomous Lawnmower 

Competition” is designed to be representative of a typical suburban environment and 

highlights many of the challenges that would be faced by commercial autonomous 

lawnmowers [8]. 

In the competition, robots are placed in an irregularly shaped course, which 

contains obstacles such as white fence and flowers with flowerbed edging that are semi-

randomly placed and not outlined before the competition run.  To achieve a high score, 

the robot must carefully edge along these obstacles, cutting as much grass along their 

border without damaging them.  The robot must also avoid a moving obstacle, a stuffed 

FIGURE 2: The 2009 CWRU Cutter Autonomous Lawnmower 
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dog mounted on a remote controlled car, and execute ranged sensing and avoidance 

behavior as the dog passes in front of the robot [8]. 

To accomplish these tasks, CWRU Cutter relies primarily on differential GPS for 

positional information and, in previous years, relied on a “light detection and ranging 

(LIDAR)” unit to determine relative distances between itself and the nearest obstacle [9].  

LIDAR natively outputs ranges in a polar coordinate system between the (0,0) location of 

the unit, and the distance, in millimeters, to the nearest obstacle in front of the sensor 

within a 45º angular range relative to the sensor’s forward facing plane at 0.5º angular 

increments [FIGURE 3]. 

 

Range-Theta pairs returned by the LIDAR unit are used to construct a 

representation of drivable terrain around the robot known as “polar freespace” [9][10].  

FIGURE 3: An illustration of a LIDAR scan.  The LIDAR unit (bottom) sends out laser readings at 0.5º 

angular increments (blue dots), which reflect off of obstacles (red circle).  This returns ranges that are used 

to calculate amount of space between the sensor and the nearest obstacles (light blue area).  If an obstacle 

is not observed, the laser is not reflected and a range equal to the maximum observable distance for the 

sensor is recorded for that angle. 
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As the robot drives through its environment, it remembers the previously observed 

freespace immediately behind it, and subsequent LIDAR readings that measure ranges to 

the nearest obstacles in front of the robot are combined via a Kalman filter.  Combining 

what the robot remembers with new LIDAR readings creates a 360º description of ranges 

to the closest obstacles immediately surrounding the mower [FIGURE 4]. 

 

 

 

 

Tracking the freespace immediately around the robot allows it to perform ranged 

detection and reflexive avoidance of obstacles in the yard without needing to lay down a 

perimeter wire.  During operation, the robot follows a sequence of GPS waypoints, which 

define its mowing path.  GPS waypoints are automatically generated sequential locations 

within the yard that the mower must traverse while it is mowing.  As the robot senses an 

obstacle in its generated mowing path, it will gradually slow down as the measured range 

FIGURE 4: An illustration of polar freespace.  The lawnmower (bottom) approaches an obstacle (red 
shape), while the LIDAR is continuously measuring the amount of space between the robot and obstacle 

locations within the sensor’s field of view (green shape).  Space currently occupied by the robot is also 

considered to be obstacle free.  This creates a 360º of space around the robot that the mower can travel to.  

As the robot travels forward, it remembers previously observed freespace and only updates the ranges in 

front of the mower that the LIDAR directly observes (right).  The 360º representation of space that the 

mower can travel to is referred to as the polar freespace.   
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between it and the observed obstacle decreases.  Once the robot gets close enough to the 

obstacle, it will turn to avoid it.  The robot then drives along the obstacle, continually 

attempting to turn into it in an attempt to travel to the nearest GPS waypoint and resume 

its mowing path.  This creates a reflexive edging behavior that allows the robot to cut 

along all observed obstacles in its mowing environment in a consistent way.  If the 

mower passes a GPS waypoint during this reflexive edging behavior, it will look towards 

the next GPS waypoint in its mowing path, and try to reach it.  Once an obstacle has been 

passed, it will resume its pre-generated mowing path and follow GPS waypoints until it 

encounters another obstacle and repeats this behavior [FIGURE 5].   

 

By coupling GPS positional information with generated polar freespace 

measurements, the robot achieves a high quality of cut, since it follows a structured path 

and mowing behavior, while being governed by dynamic, unplanned obstacle avoidance 

 
 

FIGURE 5: An illustration of reflexive obstacle avoidance.  The mower’s driving behavior in each image 

is indicated by the black arrow.  (Far left) The lawnmower (bottom) encounters an obstacle (red shape) 

while following its mowing path (yellow line) generated by connecting consecutive GPS waypoints 

(yellow dots).  As the robot gets close to the obstacle, LIDAR observes it and the robot begins to turn left 

to avoid the obstacle.  While moving forward, it continuously attempts to turn right into the obstacle in an 

attempt to travel to the nearest GPS waypoint, but cannot, because LIDAR continues to observe that the 

obstacle is present.  Eventually, the robot passes a GPS point.  It then looks towards the nearest waypoint 

and continues to turn in an attempt to reach it.  It again does not reach it before passing it and moves on to 

the next waypoint.  Since this waypoint is not located inside of the obstacle, it turns right, reaches it, and 

continues mowing along the same line as it did before encountering the obstacle. 
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rules.  While CWRU Cutter’s current obstacle detection and ranging system, which is 

based solely on LIDAR, is robust and appropriate for a proof-of-concept robot, it has 

several major drawbacks.  First, it is only able to observe obstacle locations and cannot 

differentiate between obstacle types.  Therefore, it will identify a tall blade of grass and 

flowerbed edging or feet identically.  Since LIDAR can only observe obstacles in one 

plane, it will not see obstacles that are outside of its field of view.  In the 2008 CWRU 

Cutter, this presented a problem for mowing, since the sensor orientation was fixed on the 

robot, and the sensor could not see low obstacles, such as ground cover.  For a consumer 

robot, LIDAR had one additional major drawback – price. 

While a LIDAR is an extremely robust sensor and is capable of functioning in a 

wide variety of environments and lighting conditions, even low-end models cost upwards 

of $5000 USD, and are therefore prohibitively expensive for inclusion in a commercial 

autonomous robot that consumers can purchase at their local hardware store [11].  To 

retain functionality of CWRU Cutter’s current obstacle avoidance system, it is therefore 

necessary to replace LIDAR with a sensor that can output the same information less 

expensively.  One such sensor is a digital camera. 

 

2.4 Cameras & Computer Vision 

With their rising ubiquity in almost all areas of autonomous industrial systems 

and consumer electronics, digital cameras are available at drastically lower prices than 

LIDAR.  Though cameras do not natively output data in inherently useable formats like a 

LIDAR, incoming images can easily be abstracted into multiple forms, which make them 

extremely versatile.  Though image abstraction methods are oftentimes computationally 



22 
 

intensive, computer visions systems are now widely used in autonomous robotic 

applications, thanks to ever increasing processor speeds [12][13][14].  The computational 

complexity issue for real-time computer vision applications, however, is non-trivial and 

must always be balanced with the computer-vision field’s primary interest – how to 

identify useful information in the image to abstract in the first place. 

Since computer vision is so versatile, strict methods of how images are analyzed 

do not exist, and, as such, applications for vision-based sensing are highly varied.  Many 

DARPA Challenge robots have utilized stereo-vision for ranging and car identification 

that was integrated with LIDAR information to govern lane-changing behavior [15].  

During the 2005 Grand Challenge, Stanford University’s autonomous vehicle “Stanley” 

relied on road color information to control the vehicle’s driving speed [12].  Computer 

vision’s versatility has led researchers to extract useful image information in multiple 

ways, the most successful of which have been color and visual texture. 

 

2.5.1  Color 

 Digital images are composed of 2D arrays of pixels [16].  The number of pixels in 

an image is given by its resolution.  For example, a 640x480 pixel image contains 

640*480 (307,200) pixels.  A pixel can assume a color value, which can be defined using 

various color models. 

 One of the earliest and most widely used color models is “Red, Green, Blue 

(RGB)” [17].  The theory of the RGB color model is based on the Young–Helmholtz 

theory of trichromatic color vision, which was developed in 1850, and mirrors the three 

types of color receptors in the human retina [17].  The color model contains three primary 



23 
 

colors – red, green, and blue.  The model is additive, and states that when these three 

primary colors are mixed together in different ratios, it is possible to create a multitude of 

colors, from black, which is created when none of the colors are present and is 

represented by the RGB vector <0,0,0> to white, which is created when all of the colors 

are present in the fullest amount and is represented by the RGB vector <255, 255, 255> 

when utilizing a 24-bit color model [16] [FIGURE 6].  However, RGB is not the only 

color model which can be used to represent a color. 

 

  

 In the 1970s, Xerox and the New York Institute of Technology developed the 

HSV color model as an alternative to RGB for inexperienced users to describe color 

based on human intuition [18].  HSV stands for “Hue, Saturation, and Value.”  During 

this time, a similar color model called “HSL/HSI” was also developed, which replaces 

the “value” component with a “luminance/intensity” component [18].  In these models, 

FIGURE 6: The RGB Color Cube [GNU Image: Wikipedia] 
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the hue component describes the base color of a pixel.  Saturation describes the amount 

of the present color, and luminance describes how light or dark the pixel’s color is.  For 

example, let us intuitively describe the color of a coffee cup [FIGURE 7 left].  Observing 

the cup, we say that it is blue (hue).  However, relative to other blues we perceive, such 

as a Blu-ray disc case, we say that the coffee cup is very blue (saturation) [FIGURE 7 

right].  Finally, the blue observed in the coffee cup is relatively dark compared to the Blu-

ray disc case (luminance/intensity).  By quantifying these descriptions numerically, it is 

possible to create a representation of the HSI color space [FIGURE 8]. 

 

 

 FIGURE 7: Hue examples. CWRU coffee cup (left) and a Blu-ray disc case 
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 It is possible to convert between RGB and HSI color representations by 

calculating the individual components of the new color model based on the available 

model’s components.   

 

2.5.1.1 Color Applications for Autonomous Vehicles 

 Since a pixel’s color vector is easily read and does not require complex 

computations to extract, color usage has been extensively investigated for application in 

autonomous vehicles to identify objects of interest and to determine drivable terrain 

[12][13].   

 Object identification via RGB functioned satisfactorily for identifying 

geometrically simple objects with constant color under highly controlled lighting 

conditions or in an outdoor environment where lighting conditions were fairly constant 

[20][12].  However, RGB representation is exceedingly sensitive to changing lighting 

conditions, since a color under different illumination is represented by a completely 

FIGURE 8: The HSL color cone [19] 
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different color vector [20].  Therefore, its applications in outdoor environments for 

mobile robot navigation are limited. 

 HSI  on the other hand was found to be insensitive to changing lighting 

conditions, since the hue component remained relatively constant, as the underlying 

object’s color did not change when the object was occluded by shadows [21][20].  As 

such, HSI has been widely applied in agricultural applications for autonomous weed 

identification and spraying [22][23].  It is important to note that while HSI color 

representation is more robust than RGB, identification failures occur when identifying 

objects with high color variation or objects under extreme lighting conditions.  Therefore, 

it is necessary to rely on additional visual quantifiers to improve recognition 

performance.  One such measurement is visual texture. 

 

2.5.2 Texture 

 With recent increases in computational power, visual texture has become a way of 

robustly identifying targets of interest in an image for autonomous vehicle applications.  

Texture aims to quantify underlying target surface characteristics that are color and 

illumination independent.  For example, the texture of cardboard would intuitively be 

described as “smooth,” whereas carpet is “bumpy” and “less smooth than cardboard,” and 

grass is “messy” [FIGURE 9].  To identify texture based on these qualitative descriptors, 

it is necessary to extract and quantify visual texture of various objects.  Unfortunately, 

unlike image color, which is clearly defined in computing through widely accepted color  
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models, researchers use various texture descriptors depending on what best suits their 

application [16][24].  Therefore, no universal descriptors of what constitutes “texture” 

exist.  

 One of the more intuitive methods of quantifying visual texture is through edge 

detection.  Edge detection is an image processing technique which aims to detect 

boundaries based on color discontinuities between a center pixel and its surrounding 

neighbors across one component of the color vector in an image [25].  Like components 

of a color vector for an entire image are known as a “color plane” and pixel areas within 

an image are known as “pixel neighborhoods.”  Discontinuities are quantified by 

calculating an oriented gradient within the neighborhood and plotting the magnitude of 

the result at the center pixel [FIGURE 10].  Larger magnitudes correspond to larger 

discontinuities, which result in a stronger edge response. 

FIGURE 9: Surfaces with various visual texture.  (From left to right) cardboard, carpet, and grass. 
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Edge detection is a local descriptor, since edge magnitudes are based on relative 

values between a pixel and its neighbors.  This is an important quality for visual texture, 

since an illuminated neighborhood will produce the same edge response as a shaded 

neighborhood, due to the fact that the relative color changes between the pixels is the 

same for both neighborhoods [FIGURE 11]. 

 

 

FIGURE 10: Illustration of oriented gradient used to calculate edges in a 3x3 pixel neighborhood.  Red 

arrows indicate calculation of horizontal edges and blue arrows indication calculation of vertical edges.  

The magnitude of both differences is plotted at the center pixel and indicates the edge response strength 

for that neighborhood. 

FIGURE 11: An example of edge detection.  The original image (left) and the resulting image (right) 

after edge detection.  Images are separated by the red line.  A horizontal edge detector is applied to the 

left image, where no color change occurs until the middle of the image, where color changes the 

maximum possible amount in RGB space, from 0 to 255.  This results in a strong edge response in the 

middle three pixels of the image, indicated by a vertical white line. 
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Gradient neighborhood calculations are performed in computing via convolution.  

To perform a convolution, it is necessary to define a convolution kernel.  A convolution 

kernel is a square matrix, whose dimensions correspond to the desired neighborhood size 

a user wishes to calculate the gradient for and the elements in the matrix correspond to 

weights of the individual rows or columns in the magnitude calculation.  A common 

convolution kernel for edge detection is a Prewitt kernel, which calculates the equally 

weighted horizontal or vertical derivates in a pixel neighborhood.  For a 3x3 

neighborhood, the horizontal & vertical Prewitt filters (Gx and Gy, respectively) are 

given by: 

 

1 0 1

1 0 1

1 0 1

Gx  (1) 

and 

 

1 1 1

0 0 0

1 1 1

Gy . (2) 

 
Filter directionality is also an important property of image convolution, since 

oriented filters will respond differently to oriented edges in an image.  For example, 

convolving Figure 11 with Gx yields a strong edge response, since the convolution 

encounters a vertical line with a stark color difference in the middle of the image.  

Convolving Gy with the same image yields no edge response, since there is no color 

change between neighboring vertical pixels in the image [FIGURE 12].  
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Edge detection makes underlying surface characteristics more apparent.  Applying 

Gx to Figure 9 creates a color independent description of the samples’ visual textures 

[FIGURE 13].  It is now necessary to quantify these textures numerically, so that they 

can be identified by a computer.  A common method is identification via “block 

statistics” [26].  In this method, a collection of edges within a pixel neighborhood is 

defined as the visual texture.  Statistics of the edge response magnitudes for each pixel 

within the neighborhood are then calculated.  This yields statistical values that describe 

various visual textures which are then used to identify and segment surfaces in incoming 

images.   

 

 

FIGURE 12: Edge detection outputs for horizontally oriented edge detector (left) and vertical edge 

detector (right) for the original image presented in FIGURE 11.  In this example,   Images are separated 

by the red line.  While the horizontal detector is able to find an edge, no edges are detected by the 

vertical detector, as the colors in the columns of the image are constant. 

FIGURE 13: Horizontal edge detection results of Figure 9.  Each sample has an intuitively apparent, 

distinct visual texture. 
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2.5.2.1 Texture Applications for Autonomous Vehicles 

Since edge-based texture is a relative measurement based on neighboring pixels, it 

functions well in environments where lighting conditions are not strictly controlled.  This 

makes it an ideal method of identifying objects in outdoor environments, where surfaces 

can exhibit large color variations and inconsistencies due to solar illumination, or where 

the color is unperceivable due to shadow occlusion. 

Various visual texture measurements have been successfully utilized for robot 

navigation on autonomous vehicles to determine drivable terrain around the robot or to 

identify objects of interest [26][27][28].  Texture’s application for autonomous 

navigation can depend largely on how the sensor is mounted on the robot.  As the camera 

is mounted at a shallower angle relative to the vertical axis on the robot, it can perceive 

objects further away.  The distance between the camera and a perceived object is referred 

to as the “camera-object distance.”  Since cameras have fixed resolutions, they perceive 

less texture detail about objects that are further away.  Perceiving less detail acts as a 

natural low pass filter and images of distant objects will have less variation in surface 

texture that is due to small objects like ground cover, weeds, or pebbles.  When the 

camera can see far into the distance, visual texture is well suited for looking at textures 

over a large area, which makes it an ideal method of identifying drivable terrain. 

During the 2007 DARPA Urban Challenge, multiple robots used visual texture to 

determine road surfaces [27][28].  In these applications, the cameras were mounted at 

least a meter above the ground and had a camera-object distance on the order of 10-

100m.  Therefore, cameras on these robots were able to perceive large scale road texture 

to keep the robots on course. 
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Conversely, visual texture can also be used to identify objects of interest when the 

camera is mounted closer to the ground and has a small camera-object distance.  In 2006, 

Watchareeruetai et al. demonstrated a texture-based method of identifying weeds for 

targeted herbicide spraying on an autonomous lawn care vehicle [26].  In this case, the 

camera-object distance was on the order of 1 meter.  Utilizing this method, the 

researchers were able to achieve a 91.1% successful weed identification rate and 

demonstrated that visual texture could be used to extract information about small objects 

in an image when the camera geometry was set up appropriately.  The closer the camera 

is to the object of interest, the more pixels are dedicated to smaller real-world space.  

Therefore, it is also possible to extract minute details about individual objects using 

texture.   

These methods serve as motivation for a visual-based obstacle detection and 

navigation system for CWRU Cutter. 
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3. Methods of Grass Identification 

3.1 Motivation 

 The goal of this research is to create a robust method of identifying grass in an 

image based on color and edge-based visual texture and to quantify their descriptors.  

This information will be used by CWRU Cutter for reflexive obstacle avoidance.  The 

future goal of the project is to replace the currently used LIDAR sensor with an array of 

cameras, thereby decreasing the robot’s overall price and increasing its 

commercialization potential. 

 Due to the inherently destructive nature of a lawnmower, it is unacceptable for the 

robot to collide with any obstacles during operation.  Therefore, all obstacles the mower 

encounters are considered equally important.  By identifying grass in an image, the 

mower intrinsically knows all obstacle locations in its current field-of-view, since 

anything that is not grass is an obstacle.  The complexity of creating a vision-based 

obstacle identification system becomes much simpler when the problem is framed this 

way, since it exploits a key detail about lawn mowing – the robot should only be cutting 

while it is moving on grass.
2
  Due to the variability of objects the robot could encounter 

while it is mowing, classifying and training the robot to recognize every known obstacle 

is an impossible task.  However, if the robot can successfully differentiate between grass 

and everything else with a high degree of accuracy, it is possible to create a low-cost, 

                                                        
2 Though a lawnmower should only mow grass, this is not necessarily the only surface a lawnmower drives 

over during operation (for example: turning around on the sidewalk).  The set of “drivable” terrains was 

restricted to grass for simplicity.  If grass can be successfully identified by a range of statistical values 

utilizing the proposed measurements, it is likely that other, visually distinct surfaces can be described by 

different ranges for the same statistic.  
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vision-based, safe autonomous mowing system that can be used in future, commercial 

versions of CWRU Cutter. 

 

3.2.1 Grass Identification via Hue 

 Image hue is used to identify grass in the image based on statistical measures that 

are calculated from randomly selected 50x50 pixel neighborhoods extracted from 

randomly selected images of grass in the collected data set where each neighborhood 

contains only either illuminated or shaded grass.  The following objects and number of 

neighborhoods were used for statistical calculation – 40 neighborhoods of illuminated 

grass and 10 neighborhoods of shaded grass.   

Since the raw camera images are represented in the RGB color space, it is first 

necessary to calculate the hue component of the HSI color vector according to: 

 

1
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where h is the normalized hue component and r, g, and b are the normalized components 

of the original RGB vector [24].  The normalized RGB components are given by 

 
R

r
R G B

 (4) 

 
G

g
R G B

 (5) 

and 
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B

b
R G B

. (6) 

Since HSI color space can be represented by a cone where all possible hue values lie on 

the cone’s plane base, hue values can be represented by an integer in the range [0, 360).  

These values are represented as integers due to the way colors are represented in digital 

images.  Since (3) is the normalized hue component, it is necessary to scale the 

normalized hue component h into this range through the equation 

 
180

(int)
h

H  (7) 

where (int) represents a typecasting operation of the scaled value into an integer and H is 

the scaled hue component of the HSI color vector.   

It is important to note that singularities occur in (3) when r, g, and b lie along the 

RGB color cube’s grayline and therefore have the same numerical value.  This results 

from color representation in the HSI color model where white, black, and grays have an 

undefined hue. 

Once the hue component is computed for each training neighborhood, the mean 

and standard deviation of the hue for the neighborhood is calculated.  The average of the 

mean neighborhood hue values is then computed across the set of neighborhoods.   

The hue is calculated for all images acquired by the robot and all pixel hues 

within two standard deviations of the previously calculated mean hue are marked as 

grass.  Pixels that fall outside of this range are marked as obstacle containing.  If more 

than 50% of the pixels within a neighborhood are identified as grass, the entire 

neighborhood is marked as grass containing.  This creates a binary (grass/not grass) 
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representation of drivable terrain in the image, which can be abstracted to generate a 

polar freespace representation around the robot as described in Chapter 2. 

 

3.2.2 Grass Identification via Texture 

 A combination of seven edge-based texture statistics are used to identify grass.  

These statistics are calculated for non-overlapping pixel neighborhoods in an approach 

known as “block statistics” [26].  Similar to the hue processing described in the previous 

section, statistical measures used to identify grass and objects in the image are calculated 

from randomly selected 50x50 pixel neighborhoods from the data set.  The following 

objects and number of neighborhoods were used to calculate these statistical measures – 

40 neighborhoods of illuminated grass, 10 neighborhoods of shaded grass, 10 

neighborhoods of flowers, 10 neighborhoods of white plastic fence, 10 neighborhoods of 

black plastic flowerbed edging, 10 neighborhoods of blue jeans, and 10 neighborhoods of 

a soccer ball.  Since the fence, flowerbed edging, jeans, and soccer ball are man-made 

and do not naturally occur in nature, these objects are collectively referred to as “artificial 

obstacles” and their texture is referred to as “artificial texture.” 

 The edge-based texture statistics are computed from the intensity component of 

the HSI image.  As previously discussed, the RGB color model represents object color 

poorly in changing lighting conditions [21].  HSI representation, however, is more 

illumination independent and therefore represents object color better under various 

lighting conditions.  To mitigate the effects of variations in lighting conditions in 

incoming images, edge detection is performed on the intensity component, I, of the HSI 
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color model where  I is given by the mean value of the RGB components for individual 

pixels, or 

 
3

R G B
I . (8) 

 Horizontal and vertical edge responses are calculated from the resulting intensity 

image using the horizontal and vertical Prewitt convolution kernels given by (1) and (2), 

respectively.  Each convolution yields a new grayscale image, wherein the pixel intensity 

given by an integer value between [0,255] indicates the edge strength at that pixel 

location.  These edge images are referred to as “horizontal” and “vertical texture images,” 

respectively. 

These horizontal and vertical grayscale texture images were converted to binary 

images by discarding edge strengths below an empirically determined threshold of 21 and 

setting corresponding pixel locations of edge strength above the threshold to 1.  

Unconnected pixels in the horizontal and vertical binary texture images were removed.    

The horizontal and vertical binary texture images were then summed to create a 

directionally insensitive binary texture image corresponding to the input image.  Figure 

14 illustrates an example neighborhood and the resulting grayscale and binary texture 

[FIGURE 14]. 

 

 

Seven texture statistics were calculated for each sample neighborhood: 1-2.) 

binary horizontal and vertical variance, ( )Var R , 3-4.) mean grayscale horizontal and 

vertical intensity, I , 5-6.) mean binary horizontal and vertical edge response area, A , and 

FIGURE 14: Extracted visual texture. (Left to right) RGB neighborhood, resulting horizontal grayscale 

texture, and thresholded horizontal binary texture. 
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7.) horizontal and vertical neighborhood centroid location of directionally invariant 

binary texture images, ( ,x y ), respectively.   

The use of variance as an important texture classifier was based on [26].  The 

other texture measurements were chosen for their computational simplicity, which is 

important for operating in real-time on a mobile robotic platform with limited hardware, 

as well as their relative uniqueness compared to other measurements used.  Both the 

binary and centroid area are based on image moments (described below), which uses 

common elements to compute statistics.  Mean intensity is merely an average of all the 

pixels in a neighborhood. 

The variance, Var(R), of the horizontal and vertical binary texture images is 

computed by 

 ( )
( 1)

X X
Var R

n
 (9) 

where X is the binary value of the current pixel, X is the mean value of the pixels within 

the square neighborhood, and n is the area of the neighborhood given by the total number 

of pixels within the neighborhood.  Since we are computing the variance of a binary 

neighborhood, this reduces to  

 

2

( )
( 1)

ww
n

Var R
n

 (10) 

where w is the number of pixels in the neighborhood above the binary threshold.   

 The mean grayscale intensity value of a neighborhood, I , is computed by 

summing all pixel values of the grayscale texture images and dividing by the total 

number of pixels within the neighborhood.   
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The binary area and centroid locations of the pixel neighborhoods were calculated 

as 

 ( , )i j

ij

x y

M x y I x y  (11) 

where the calculated moment 
ijM  is given by the summation over the x and y dimensions 

of the pixel neighborhood, and i and j correspond to the index of the calculated moment.  

The binary area is given by 00M , and the horizontal and vertical centroid locations within 

the neighborhood, x and y , respectively, of the directionally ambiguous texture image are 

given by 

 10

00

M
x

M
 (12) 

and 

 01

00

M
y

M
. (13) 

After determining the statistical values for grass in the set of training images, 

corresponding texture measurements were averaged over the samples to compute the 

statistic’s mean and standard deviation.  These averages were then used to perform non-

overlapping binary segmentation of new input images.  For each new input 

neighborhood, if the measured statistic of the input neighborhood fell within an 

empirically determined range of three standard deviations of the previously calculated 

statistical measurement, that neighborhood was marked as grass.  Conversely, if the 

neighborhood measurements fell outside this range, that neighborhood was marked as 

containing an obstacle.  This creates a binary representation of drivable terrain based on 

texture in the image, which can be abstracted to generate a polar freespace representation 



40 
 

around the robot.  Individual binary representations can then be combined across the 

different binary drivable terrain representations for corresponding neighborhoods to 

potentially create an improved texture-based representation of traversable terrain in the 

image.   

 

3.2.3 Hue & Texture Combination 

 While some image measures exhibit better performance than others for 

recognizing grass, no single measure was able to differentiate between grass and 

obstacles with a 100% success rate.  To improve performance, individual measures were 

combined to generate a more accurate representation of mowable terrain in the image.   

 The performance for each measure was estimated by its ability to correctly 

classify 40 sample neighborhoods each of illuminated grass, shaded grass, and obstacles.  

These estimates were then used to generate a weighting coefficient for individual 

measurements 

 
( )

120

illum shaded obsC C C
 (14) 

where is the normalized weighting coefficient and illumC , shadedC , and obsC are the 

number of correctly identified neighborhoods of illuminated grass, shaded grass, and 

obstacles, respectively.   Each weighting coefficient is normalized by dividing by the 

total number of image measurements (40x3=120 in this case) to generate a normalized 

weighting coefficient between [0,1].  

Segmented binary texture images are multiplied pixel by pixel by their 

normalized weighting coefficients.  Then, corresponding neighborhoods are added with 

their applied weights to generate a grayscale representation of mowable terrain in the 
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image, known as a probability map.  The likelihood of a neighborhood containing grass is 

determined by the sum of the weighted images across the utilized measurements.  For 

example, if a binary neighborhood is identified as grass containing for a texture 

measurement and the measurement’s normalized weighting coefficient is 0.1, the 

likelihood that that neighborhood contains grass based on that texture measurement 

increases by 0.1.  This is repeated for all texture measures and corresponding 

neighborhood values are added.  The sum of these neighborhoods therefore indicates the 

likelihood that this image region contains grass.  

Let us assume that five texture measurements are used to identify grass, where 

four are equally weighted and one has a weight twice that of the others.  The measures’ 

normalized weights are identified as a through e, and have the following values: a 

through d = 1/6, e = 1/3.  Now, assume that the texture measurements weighted by a, c, 

and e identify their corresponding neighborhoods as grass, indicated by a binary value of 

1.  Neighborhoods b and d state that the neighborhood is not grass, indicated by a 0.  

Therefore the likelihood, L, of that neighborhood being grass is 

 
1 1 1 1 1 2

1 0
6 6 3 6 6 3

L . (15)
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4. Results 

4.1 Datasets Used 

 
 All statistics were calculated from randomly selected neighborhoods that were 

randomly selected from images in two data sets, taken between 9:00 AM and 11:59 AM 

on 8/31/2009.  All neighborhoods contained only one type of surface.  For example: 

neighborhoods containing illuminated grass contained only illuminated grass, shaded 

grass contained only shaded grass, and plastic fence neighborhoods contained only plastic 

fencing.  Images from both sets were recorded on MTD’s Test Plot 1, which contained a 

mixture of rye, blue, creepy red fescue grasses
3
.  These data sets were chosen for analysis 

for several reasons. 

First, this grass mixture corresponds to the most common type of lawn grass 

found in Northeast Ohio, and therefore results represent an accurate performance 

indicator of hue- and texture-based grass identification in a real-world environment.  

Second, data collection times are representative of typical times people tend to mow their 

lawns.  Both data sets maintained constant lighting conditions, where the sun was visible 

at all times and never obscured by cloud cover when images were recorded. 

By randomly selected neighborhoods from both data sets, calculated statistics are 

valid for multiple times of day and are therefore not tuned to function only under specific, 

time-dependent lighting conditions.  

 

 

 

                                                        
3 For further details on data collection methods and the collected data set, please see the Appendix. 
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4.2 Quantification of Descriptors 

 
Hue and texture statistics were calculated for four square neighborhood sizes -- 

11x11, 21x21, 31x31, and 41x41 pixels.  After calculating the statistics for the images, 

the mean and standard deviation ( ) of the statistics for each type of lawn surface at 

each neighborhood size were computed to observe groupings in the measurements.  For 

illuminated grass, the mean hue value, h , for a 31x31 neighborhood was determined to be 

 180.04h  (16) 

with a standard deviation, ( )h , of 

 ( ) 30.08h . (17) 

Table 1 displays the calculated texture statistics for sample 31x31 pixel neighborhoods 

[TABLE 1].  Statistics were calculated from the following number of samples for each 

texture type: Illuminated grass – 40 samples, shaded grass, flowers, and artificial 

obstacles – 10 samples each. 

To visually display clustering, similar texture measures for each type of lawn 

surface were plotted in the same graph [FIGURES 15-30].  Graphs were generated for all 

statistical measurements across all four neighborhood sizes.  The following data was 

plotted for each neighborhood size: Mean neighborhood intensity of grayscale horizontal 

(hTx) vs. vertical (vTx) texture images for corresponding neighborhoods ( I ), variance of 

binary horizontal vs. vertical texture images for corresponding neighborhoods ( ( )Var R ), 

mean edge response area of binary horizontal vs. vertical texture images for 
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corresponding neighborhoods ( A ), and local horizontal and vertical centroid location for 

corresponding neighborhoods of directionally ambiguous binary texture images ( ,x y ).   
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FIGURE 15: Binary horizontal vs. vertical neighborhood variance for 

samples at a neighborhood size of 11. 

FIGURE 16: Grayscale horizontal vs. vertical neighborhood intensity 

for samples at a neighborhood size of 11. 
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FIGURE 17: Binary horizontal vs. vertical neighborhood area for 

samples at a neighborhood size of 11. 

FIGURE 18: Binary x vs. y neighborhood centroid location for 

samples at a neighborhood size of 11. 
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FIGURE 19: Binary horizontal vs. vertical neighborhood variance for 

samples at a neighborhood size of 21. 

FIGURE 20: Grayscale horizontal vs. vertical neighborhood intensity 

for samples at a neighborhood size of 21. 
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FIGURE 21: Binary horizontal vs. vertical neighborhood area for 

samples at a neighborhood size of 21. 

FIGURE 22: Binary x vs. y neighborhood centroid location for 

samples at a neighborhood size of 21. 
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FIGURE 23: Binary horizontal vs. vertical neighborhood variance for 

samples at a neighborhood size of 31. 

FIGURE 24: Grayscale horizontal vs. vertical neighborhood intensity 

for samples at a neighborhood size of 31. 



51 
 

 
 

 

 
 

 

FIGURE 25: Binary horizontal vs. vertical neighborhood area for 

samples at a neighborhood size of 31. 

FIGURE 26: Binary x vs. y neighborhood centroid location for 

samples at a neighborhood size of 31. 
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FIGURE 27: Binary horizontal vs. vertical neighborhood variance for 

samples at a neighborhood size of 41. 

FIGURE 28: Grayscale horizontal vs. vertical neighborhood intensity 

for samples at a neighborhood size of 41. 
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FIGURE 29: Binary horizontal vs. vertical neighborhood area for 

samples at a neighborhood size of 41. 

FIGURE 30: Binary x vs. y neighborhood centroid location for 

samples at a neighborhood size of 41. 
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Since no attempt was made to distinguish between different types of obstacles, all 

non-grass data points with the exception of flowers were plotted with the same color (red) 

for visualization purposes.  The visual texture of fence, flowerbed edging, blue jeans, and 

soccer ball is referred to as “artificial texture,” as these objects are manmade.  Similarly, 

these obstacles are described as “artificial.”  In all plots, surface types were identified by 

the following color scheme: green – illuminated grass, yellow – shaded grass, magenta – 

flowers, red – artificial obstacles. 

 

4.3 Discussion of Individual Texture Measurements 

For the binary statistics (binary horizontal and vertical variance, area, and 

centroid location) distinct, compact clustering of illuminated grass was observed for all 

neighborhood sizes [FIGURES 15, 17-19, 21-23, 25-27, 29-30].   The mean values of the 

clusters for oriented texture measurements are close to the diagonal of the plots, 

indicating no strong directionality for either the horizontal or vertical texture images.  

This indicates that both horizontal and vertical texture images identify illuminated grass 

equally well, and that the edge filter orientation is not a determining factor in being able 

to identify grass based on observed statistics.    

For all texture measures, the distribution of illuminated grass data points for 

corresponding texture measurements became more compact as the neighborhood size 

increased [FIGURES 15-30].  This is because computations over a larger neighborhood 

are less sensitive to variations in individual pixels, thereby decreasing the overall 

standard deviation of the neighborhood computations.   
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Binary horizontal and vertical measurements for oriented binary texture images of 

grass exhibited distinct clustering behavior as compared to artificial obstacles [FIGURES 

15, 19, 23, 27].  The color uniformity of artificial obstacles (i.e white fence, black 

obstacle edging, blue jeans, black and white soccer ball) resulted in data points near the 

origin.  Images of an artificial obstacle border exhibit strong unidirectional texture 

response.  This is observed in data points located on or near one of the axes [FIGURES 

15, 19, 23, 27].   Variance from artificial obstacles was distributed uniformly between the 

origin and approximately (0.20, 0.20) for all resolutions [FIGURES 15, 19, 23, 27].  

Conversely, illuminated grass had significantly different, tightly clustered variation for 

both horizontal and vertical binary texture images [FIGURES 15, 19, 23, 27].  The 

observed variance of illuminated grass was the same for horizontal and vertical binary 

texture and did not change as neighborhood size increased, being centered at 

approximately (0.25, 0.25) [FIGURES 15, 19, 23, 27].  Noticeable separation between 

illuminated grass and artificial obstacles again occurred at neighborhood sizes of 31x31 

or greater [FIGURES 15, 19, 23, 27]. 

The mean binary area exhibited separation for all neighborhood sizes [FIGURES 

17, 21, 25, 29].  As the neighborhood size increased, the edge response area of 

illuminated grass increased, whereas the areas of artificial obstacles remained constant 

due to low edge response.  Distinguishable separation of artificial obstacles and 

illuminated grass areas was again observed for neighborhood sizes greater than or equal 

to 31x31. 
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For all neighborhood sizes, tight clustering of neighborhood centroid location was 

observed for illuminated grass, whereas artificial obstacles did not exhibit tight clustering 

[FIGURE 18, 22, 26, 30]. 

All statistics showed overlap between the flower obstacle and shaded grass 

[FIGURES 15-30].  Flower textures were generally distinct from artificial obstacle 

textures, being either located in a different region in the graph or exhibiting a tighter 

clustering than the artificial textures.  Both of these behaviors are attributed to the same 

phenomenon.  While illuminated grass was the most “rough” texture in observed images, 

because it contained many edges per neighborhood, artificial obstacles were the 

“smoothest”, having little color variation, which caused a low edge response.  While 

flowers were less “rough” than illuminated grass, they were nearly as “smooth” as shaded 

grass in grayscale and binary textures.  Performance of binary texture distinction and 

clustering of shaded grass did not change significantly as the edge threshold was lowered 

[FIGURE 31, left].  Compared to Figure 23 [reproduced in FIGURE 31, right], which 

plots the binary x vs. y neighborhood variance of samples at a neighborhood size of 31 

and a binary edge threshold value of 21, the clustering did not significantly change as the 

edge threshold value was lowered.  This behavior was also observed in other plots of 

other binary texture measurements. 
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Measurement Hue ( )Var R hTx
 ( )Var R vTx

 A hTx A vTx ( x , y ) I hTx I vTx 

Illuminated Grass 40 40 40 38 38 40 38 14 

Shaded Grass 21 36 36 36 36 39 40 8 

Artificial Obstacles 32 37 31 35 35 28 10 33 

Flowers 16 11 5 9 9 21 14 27 

 

TABLE 2: Number of correctly identified 31x31 neighborhoods for each statistic (n=40 for each 

measurement). 

 

 

 

4.4 Grass Identification Based on Observed Image Statistics 

Though observed grass hue and all texture statistics exhibit clustering behavior, it is 

important to quantify their ability to correctly identify grass and differentiate between 

grass and obstacles.  Grass identification using hue and texture statistics was tested on 40 

randomly selected samples (described in 4.1) of 31x31 neighborhoods containing: 

illuminated grass, shaded grass, artificial obstacles, and flowers.  These results are 

tabulated in Table 3, which lists the number of correctly identified regions [TABLE 2].   

Identification rates were determined as follows.  Based on figures 15-30, 

illuminated grass was distinctly clustered from artificial obstacles for neighborhood sizes 

greater than 31x31.  Additionally, shaded grass clusters were always in the vicinity of 

FIGURE 31: Adjusted edge thresholds.  Binary x vs. y neighborhood variance for samples at a 

neighborhood size of 31 and a binary edge threshold value of 10 (left) and a binary edge threshold 

value of 21 (right).  
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illuminated grass clusters for corresponding texture measurements [FIGURES 15-30].  If 

a neighborhood’s statistic fell within three standard deviations of the corresponding 

measurement’s mean for illuminated grass, the neighborhood was marked as grass.  

Failures in identifying illuminated and shaded grass occurred when a neighborhood 

containing only these surfaces fell outside of the illuminated grass range.  Similarly, 

failures in identifying artificial obstacles and flowers occurred when a neighborhood 

containing only these obstacles fell within the illuminated grass range (false positives).  

Correct identification of illuminated and shaded grass occurred when a neighborhood 

containing only these surfaces fell within the range of illuminated grass.  Correct 

identification of artificial obstacles and flowers occurred when a neighborhood 

containing only these surfaces fell outside of the range of illuminated grass.     

Illuminated grass was correctly identified 40/40 times (100% accuracy) using only 

hue.  Hue correctly identified 21/40 samples (52% accuracy) of shaded grass, 32/40 

(80%) of artificial obstacles, and (16/40) 40% of flowers correctly.  Illuminated grass was 

correctly identified with at least 38/40 (95% accuracy) for all texture measurements 

except mean vertical grayscale intensity.  Shaded grass was identified with at least 36/40 

(90% accuracy) for all texture measurements except the mean vertical grayscale intensity.  

Binary horizontal variance and binary horizontal and vertical area identified obstacles 

correctly with at least 31/40 (77.5% accuracy).  Flowers were poorly identified.  This 

may be due to texture similarity between the grass and flowers.  It is important to note 

that this performance may not be indicative of recognition ability for all flowers, since 

only images of one flower type (Chrysanthemum) was used for analysis [FIGURE 32]. 
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Weight Coeff. Hue ( )Var R hTx
 ( )Var R vTx

 A hTx A vTx ( x , y ) I hTx I vTx 

α 0.7750 0.9416 0.8916 0.9083 0.9083 0.8916 0.7333 0.45833 

 

TABLE 3: Pre-weight coefficients for each statistic. 

 

 

4.5 Grass Identification Based on Combined Statistics  

Based on the results in Section 4.4, a weighting coefficient for each statistic was 

calculated using (14) and is tabulated in Table 3 [TABLE 3].  Since no statistics were 

able to differentiate between flowers and obstacles with at least a 30/40 (75%) success 

rate, the flower identification results were not factored into the coefficient calculations.  

This is justifiable for operation in the ION environment where all of the flowers are 

surrounded by plastic edging material (an obstacle), which was consistently recognized 

by the majority of the measurements.   

Grass identification via these combined statistics was tested on 40 randomly 

selected samples of 31x31 neighborhoods containing the same objects that were used for 

individual texture measurements.  The combined statistical measurements relied on six 

FIGURE 32: A chrysanthemum. 
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Measurement Combined (50% Voting Threshold) Combined (75% Voting Threshold) 

Grass 40 40 

Shadow 38 33 

Artificial Obstacles 32 38 

Flowers 6 15 

 

TABLE 5: Number of correctly identified 31x31 neighborhoods for combined measurement (n=40 for each 

measurement). 

identifiers – hue, ( )Var R hTx, ( )Var R vTx, A hTx, A vTx, and ( x , y ).  Intensity measurements 

were not included, due to the fact that they were not able to identify grass and obstacles 

correctly with an accuracy of over 30/40 (75%).  The weighting coefficients were 

normalized for these six identifiers and are presented in Table 4 [TABLE 4].   

 

 Correct neighborhood identification was deemed to occur if the neighborhood was 

correctly identified as grass or obstacle containing with a voting agreement greater than 

0.5 (50%).  Since each of the utilized measurement had approximately the same 

individual accuracy, this corresponds to the majority of the neighborhoods identifying the 

neighborhood as either grass containing or obstacle containing.  Neighborhood 

identification rates were also calculated for a voting agreement greater than 0.75 (75%).  

The number of correctly identified neighborhoods based on this criterion of the combined 

measurement for the four neighborhood types is tabulated in Table 5 [TABLE 5]. 

 

 For 0.5 (50%) voting agreement or greater, the ability to correctly identify shaded 

grass increases compared to nearly all statistics to 38/40 (95%) when combining multiple 

Normalized Coeff. Hue ( )Var R hTx
 ( )Var R vTx

 A hTx A vTx ( x , y ) 

αNorm 0.1458 0.1771 0.1677 0.1708 0.1708 0.1677 

 

TABLE 4: Normalized pre-weight coefficients for six identifiers. 
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texture measurements.  Illuminated grass is still recognized with 40/40 (100%) accuracy.  

Artificial obstacle recognition performance also increases compared to stand-alone hue 

and binary vertical variance measurements.  For 0.75 (75%) voting agreement or greater 

artificial obstacle recognition performance improves significantly to 38/40 (95%) and 

illuminated grass is still recognized with 40/40 (100%) accuracy.  Shaded grass 

identification drops to an accuracy of 33/40 (82.5%).  This drop occurs, because for a 

0.75 threshold to be reached for the neighborhood during voting, more individual 

measures have to agree that the neighborhood contains grass. 

Flowers remain poorly identified for both voting thresholds.  This is due to poor 

recognition of flowers using individual texture measurements.  Again, this performance 

may not be indicative compared to other flowers, since only one type was analyzed. 

 

4.6 Comparison to Similar Identification Algorithms 

 The results of the grass identification technique presented in this thesis cannot be 

directly compared to other related methods, since this method presents a novel approach 

and application to identifying grass in images and performing image segmentation.   

 Zafarifar et al. developed a method which combines color and texture 

measurements to determine grass locations in images of football fields [29].  This is used 

for grass-color correction and digital image overlays during television broadcasts.  While 

this application does not examine grass at as fine a texture as the method presented in this 

thesis and the grass and lighting conditions are more strictly controlled since 

measurements are calculated for and applied in a sports venue setting, Zafarifar et al.’s 

method is appropriate for comparison purposes since it combines texture and color 
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measurements to determine grass locations in images.  It is important to note that whereas 

Zafarifar identifies grass based on its probability, the method presented in this thesis 

utilizes a voting scheme.   Zafarifar’s method is able to identify 91% of grass in images 

correctly. 

 Another appropriate comparison can be made between the presented method and 

Watchareeruetai’s method, which also combines color and texture measurements to 

determine weed locations in images for targeted pesticide spraying [26].  Watchareeruetai 

et al. also utilize neighborhood statistics of binary texture images and combine this with 

hue measurements to determine weed locations.  However, their method differs in several 

ways.  First, they attempt to create pixel-level-accurate representations of weeds by 

utilizing overlapping neighborhoods.  Additionally, their algorithm does not run on their 

robot in real-time and is computed after all of the data has been collected.  Their method 

is able to identify 91.1% of weed locations in images correctly. 

 The method described in this thesis combines the real-time identification 

requirement met by Zafarifar et al. with hue and texture combination techniques similar 

to Watchareeruetai et al.  Using hardware similar to that on the 2009 CWRU Cutter (Intel 

Core 2 4400 @ 2GhZ with 2GB of RAM), individual texture measurements were 

computed at a real-time 15KhZ speed for 21x21 pixel neighborhoods.
4
  For at least a 0.5 

voting agreement, identification through hue and texture combination yields a 100% 

accurate identification rate for illuminated grass, a 95% accurate identification rate for 

shaded grass, and an 80% accurate identification rate for artificial obstacles. 

                                                        
4 The target operating rate for algorithms onCWRU Cutter is at least 10Hz to be considered “real-time.”  

Utilizing six 320x240 images, each of which contains approximately 165 21x21 neighborhoods, all 

neighborhoods are processed at a rate of approximately 16Hz.  Furthermore, this is a conservative estimate, 

since this is not optimized, and does not re-use common elements for multiple texture measurements, such 

as M00. 
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4.7 Qualitative Analysis of Processing Results on Full Images 

 

 

 

 

 

 

Figures 33-35 illustrate the result of applying the image processing technique 

presented in this thesis to full images [FIGURES 33-35].  These pictures were taken on a 

different day, at a different location than the images used to perform a quantitative 

analysis of neighborhood based identification.   

In each figure, the image on the right illustrates obstacle locations predicted by 

the algorithm that are overlaid with the original input image to show correspondence 

between the predicted and real-world obstacle locations.  Each method is able to identify 

obstacle locations with a high degree of accuracy.  Though non-connected false positives 

exist, these could be filtered out via the methods proposed in Section 5.2. 

FIGURE 33: Full image processing with a fire hydrant obstacle.  (Left to right) Input image, pre-

thresholded voting combination, generated binary freespace, overlay of input image and freespace. 

FIGURE 34: Full image processing with a concrete block obstacle.  (Left to right) Input image, pre-

thresholded voting combination, generated binary freespace, overlay of input image and freespace. 

FIGURE 35: Full image processing with a fence obstacle.  (Left to right) Input image, pre-thresholded 

voting combination, generated binary freespace, overlay of input image and freespace. 
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It is important to note that the obstacles present in Figures 33-35 do not 

correspond to obstacle types analyzed during training.  This demonstrates that being able 

to consistently identify grass is enough to determine obstacle locations in input images.
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5. Conclusions 

5.1 Summary 
 

 This thesis proposed a method to identify grass containing regions in incoming 

images based on computationally inexpensive measurements -- perceived hue and first- 

and second-order texture statistics.  This information can be used by autonomous 

lawnmowers, such as CWRU Cutter for real-time, vision-based navigation and obstacle 

avoidance in lawn navigation.  Based upon six measurements, images were then 

segmented into neighborhoods and corresponding neighborhoods were recombined to 

create an improved representation of grass locations.  A weighted voting scheme was 

used to combine recognition results from hue and texture statistics.  For a 50% voting 

agreement threshold, 100% of neighborhoods
5
 containing illuminated grass, 95% of 

neighborhoods containing shaded grass, and 75% of neighborhoods containing artificial 

obstacles, such as white plastic fence and plastic flowerbed edging were correctly 

identified.  For a 75% voting threshold, 100% of neighborhoods containing illuminated 

grass, 82.5% of neighborhoods containing shaded grass, and 95% of neighborhoods 

containing artificial obstacles were correctly identified.  Due to their color and texture 

similarity compared to grass, flowers were poorly identified at both probabilities, being 

identified with less than 40% accuracy. 

 

 

 

                                                        
5 n=40: illuminated grass, n=40: shaded grass, n=40: artificial obstacles 
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5.2 Future Work 

 While this thesis demonstrated that it is possible to differentiate between grass 

and various other obstacles, the currently implemented image segmentation is relatively 

simple.  Several approaches could be taken to advance the segmentation method, which 

could improve overall recognition performance, especially between grass and other 

natural textures.   

 First, individual binary freespace representations could be post processed before 

combination in order to eliminate clear false positives in the images.  In captured camera 

images, if a neighborhood is identified as obstacle containing, but all of its surrounding 

neighbors are identified as grass, it is likely that the obstacle neighborhood was falsely 

identified, since CWRU Cutter would not encounter such small obstacles during mowing.  

By comparing a neighborhood to its neighbors, additional information is gained about 

what is observed in the image and recognition performance could be improved. 

Additionally, overlapping neighborhood segmentation similar to Watchareeruetai 

et al. could be applied instead of the non-overlapping neighborhoods that are currently 

used.  By using overlapping neighborhoods, the resolution of the freespace images 

increases and the size of false positive neighborhoods could be reduced.  This again could 

increase recognition performance, since a larger percentage of grass in the image may be 

correctly identified.  It is important to note, however, that by using overlapping 

neighborhoods, the number of computations required to process an image increases, since 

some pixels in the image are now examined more than once.  This could be detrimental 
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for real-time identification of grass on an autonomous lawnmower, which may not be fast 

enough to process these images. 

The statistical quantification and segmentation methods could be changed.  By 

modeling color and texture statistics as a mean and standard deviation pair, it is assumed 

that these statistics follow a Gaussian distribution.  This may not be true.  Instead, it is 

likely that statistical groupings are defined by a more complex shape, whose boundaries 

could be better defined by a polynomial fit.  The fact that texture statistics are not simple 

Gaussian distributions has already been suggested by the overlap of statistical groupings 

for texture identifiers of various objects [FIGURES 15-30].  These groupings could be 

identified by using the Mahalanobis distance, which is a pattern classification method 

that utilizes the means of and correlations between various measurements to determine 

the clustering of various measurements [30].  By identifying groupings and modifying the 

thresholds used to identify grass in an image to reflect this, recognition performance 

could be drastically improved. 

Along these lines, groupings across multiple statistics in higher-dimensional space 

could be analyzed to determine if clustering exists for combinations of multiple statistics.  

This could again result in a clearer grouping, whose shape could be classified utilizing 

techniques such as the Mahalanobis distance to determine improved statistical 

thresholding ranges. 

To further expand this research, it is necessary to analyze algorithm performance 

on other test data in the database, which was not restricted to one type of grass and one 

lighting condition.  Based on the behavior observed in datasets that were taken at hour 

increments throughout the day and over multiple days and common grass types, it may be 
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possible to create an algorithm which adaptively adjusts threshold values for color and 

texture based on the date, time of day, and grass type.  By quantifying how changing 

these variables affects threshold values, it is possible to create a grass recognition method 

which could be utilized on an autonomous lawnmower in an applied environment. 
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Appendix 

A.1 Data Collection 

 A set of 1800, 640x480 RGB images were collected at MTD Products, Inc.’s test 

facility, located in Medina, Ohio, during four days within a two month period [FIGURE 

36].  Images were taken relative to the test day’s solar noon time and spanned from dawn 

(6.5 hours before solar noon for the first test day) to dusk (6.5 hours after solar noon for 

the first test day), to catalog many of the lighting conditions an autonomous lawnmower 

could encounter in a typical home environment.   

 

 

 Since the day length, defined as the time when the sun is first visible on the 

horizon to when it disappears beneath the horizon line, decreased with each testing day, 

collection times for subsequent days after the first test day were adjusted to account for 

this fact.  For example: the day length during the first test day was 13 hours, 8 minutes, 

FIGURE 36: Plots of various grass types at MTD’s test facility in Medina, Ohio.  Image taken near 

dusk at the end of the second test day. 
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and 58 seconds, with solar noon occurring at 13:27:03 for Medina’s geographic location.  

By the second test day, the day length had decreased by approximately 49 minutes, 

lasting 12 hours, 20 minutes, and 9 seconds, with solar noon occurring at 13:21:58.  By 

calculating the ratio of day lengths between the first and subsequent test days, it was 

possible to quantify a “time-shift correction factor,” which was used to scale the 

subsequent start and end times for data collection.   

 Due to operator limits, it was impossible to capture all of the images for one data 

set simultaneously.  Therefore, light levels and illumination conditions were assumed to 

be constant for a one-hour period between the start and end times during the first test day.  

Since the day length decreased over subsequent test days, the one-hour range was scaled 

for subsequent days by the time-shift correction factor. 

 All data was acquired using a camera setup which duplicated CWRU Cutter’s 

geometry and hardware.  The camera was elevated 0.75 meters at an angle of –45º to the 

horizontal and was fixed on a collapsible dolly cart [FIGURE 37]. The camera was an 

ImagingSource DFK21AF04 FireWire camera with a Kowa LM4PBR 4.0mm F1.2 CS-

Mount lens. 
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 Data was collected on four different, common grass mixtures of North American 

suburban lawns and included the following obstacles: none, shadows, flowers, flowers in 

flowerbed edging, blue jeans, white plastic fence, a lawnchair, a soccer ball, and a stuffed 

dog.  The flowers, flowerbed edging, white plastic fence, and stuffed dog matched the 

obstacle specifications outlined by the ION competition rulebook [8].  Ten images of 

each obstacle type were taken at normal and parallel camera lens orientations relative to 

the sun for a total of 20 images of each obstacle type for each of their recorded 

timeframes.  To ensure that edge detector response was not biased by the orientation of 

obstacles in captured images, the obstacle orientation was randomly changed in 

successive images by moving the cart around the obstacle. 

FIGURE 37: The CWRU Cutter Collapsible Chase Vehicle (CCCCV). 
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A.2 Collected Dataset Information  

Test Day 1  

Test Date: 8/31/2009 

Length of Day (Hrs:Mins:Secs): 13:08:58 

Time of Solar Noon (Time): 13:27:03 

Time Shift/Correction Factor: 1 

  

Test Day 2  

Test Date: 9/18/2009 

Length of Day (Hrs:Mins:Secs): 12:20:09 

Time of Solar Noon (Time): 13:21:58 

Time Shift/Correction Factor: 0.939 

  

Test Day 3  

Test Date:      11/23/2009 

Length of Day (Hrs:Mins:Secs): 9:39:00 

Time of Solar Noon (Time): 12:13:00 

Time Shift/Correction Factor: 0.73477 

  

Test Day 4  

Test Date: 11/4/2009 

Length of Day (Hrs:Mins:Secs): 10:15:21 

Time of Solar Noon (Time): 12:10:00 

Time Shift/Correction Factor: 0.77946768 

 

Day 1 Collection Information 

Plot # Set # Time Shift Actual Start Time Missing? Notes 

1 2 4.5 Hr Pre-Noon 9:00:00 Shadow  

1 3 2.5 Hr Pre-Noon 11:07:00   

1 4 Solar Noon 13:30:00   

1 5 2.5 Hr Post-Noon 16:00:00 Stuffed Dog  
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Day 2 Collection Information 

Plot # Set # Time Shift Actual Start Time Missing? Notes 

1 2 
Start 4.225 Hr Pre-Noon 

(Begin 4.5 Hrs Pre-Noon) 
9:00:00  Makeup: Day 1 Shadow 

4 3 Start 2.3475 Hr Pre-Noon 11:07:00   

5 5 End 2.3475 Hr Post-Noon 13:30:00   

1 5 End 4.3475 Hr Post-Noon 16:00:00  Makeup: Day 1 Stuffed Dog 

 

Day 3 Collection Information 

Plot # Set # Time Shift Actual Start Time Missing? Notes 

1 3 
Start 1.836 Hrs Pre-Noon 

(Begin 2.5 Pre-Noon) 
10:24:00 Shadow  

2 5 
End 1.836 Hrs Post-Noon 

(End 2.5 Post-Noon) 
13:02:00 Shadow  

 

Day 4 Collection Information 

Plot # Set # Time Shift Actual Start Time Missing? Notes 

1 6 
3.508 Hrs Post-Noon (End 

4.5 Hrs Post-Noon) 
14:30:00  

Makeup: Day 1 End 4.5 Hrs 

Post-Noon 

1 7 
4.677 Hrs Post-Noon (End 

6 Hrs Post-Noon) 
15:40  

Makeup: Day 1 End 6 Hrs 

Post-Noon 

 

The tables labeled “Test Day” provide information about the date when 

corresponding data was taken.  “Test date” corresponds to the day the data was taken, 

“length of day” states how long the day was, “time of solar noon” indicates the time of 

day that solar noon occurred, and “time shift/correction factor” corresponds to how start 

and end times for data collection had to be scaled relative to the first day’s length of day 

to keep lighting conditions constant.   

The tables labeled “Day X Collection Information” contains information about the 

data taken on the corresponding days.  “Plot #” indicates which MTD plot the data was 

collected on, “Set #” corresponds to the folder name where the data is contained in the 
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data base, which corresponds to the time of day that the data was taken, “time shift” 

tabulates the adjusted start/end time of when the data was collected and in parentheses 

lists which start time this corresponds to from the first day, “missing” corresponds 

missing images of a certain surface within that data set, and “notes” correspond to notes 

about the data.  For example: the note “Makeup: Day 1 Shadow” in the first row of the 

“Day 2 Collection Information Table” states that this recording was made in order to fill 

in missing shadow images from the corresponding data set taken on Day 1.  
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