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Experimental Evaluation of Robust Swing-Leg
Placement Controls in Robotic Limb Testbeds

Alexander Schepelmann, Yin Zhong, Jessica Austin, Kathryn A. Geberth, and Hartmut Geyer

Abstract—Variable swing-leg placement is crucial for robust
and stable locomotion. While appropriate leg placement is
generated in humanoid robotics by tracking pre-planned swing
motions, this approach is not suitable for controlling powered
limbs like prostheses, which form only part of the human-robot
locomotor system. In recent work, we proposed swing controls for
a double pendulum leg model that predicts variable and robust
leg placement in the presence of large gait disturbances. Here
we evaluate the performance of these novel controls on robotic
leg testbeds. In hardware experiments we find that the control
achieves robust foot placement of anthropomorphic robotic limbs
within a range of landing leg angles observed in human gait. We
further observe that a version of this control that conforms with
the constraints of neuromuscular dynamics generates a more
human-like leg behavior at the cost of placement precision. The
results suggest that the proposed controls transfer well to robotic
limb systems; in particular, they may enable improved balance
recovery in amputee locomotion with powered leg prostheses.

Index Terms—Legged Locomotion, Swing-Leg, Humanoid,
Prosthesis, Neuromuscular Control.

I. INTRODUCTION

LEGGED animals and robots use foot placement to bal-
ance dynamically [1] [2] [3] [4] [5]. Successful foot

placement first requires the identification of proper placement
targets that stabilize locomotion, which can be obtained from
simple point mass gait models in walking [6] [7] and run-
ning [8] [9]. Once identified, the second task is the control
of the swing-leg into these targets, which is achieved in
robotic applications in several ways. Humanoid systems use
centralized control strategies that pre-plan and execute full-
body trajectories using inverse dynamics and kinematics [10]
[11]. These strategies have enabled robots to walk [12], climb
stairs [13], and react to push disturbances [14] [15]. However,
they are not suited for the control of robotic limbs such as
prostheses, where the robot forms only part of the locomoting
system.

While various control methods for robotic limbs exist, a
significant number of control strategies in use today rely on
the replay of joint patterns recorded from healthy human gait
based on joint impedance [16] [17] [18], joint motion [19]
[20], or a combination of the two [21]. These patterns implic-
itly encode appropriate foot placements for steady walking at
various speeds and slopes, but do not enable foot-placement-
based balance recovery after large disturbances such as trips,
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slips, and pushes. In response to this shortcoming, control
extensions have been sought, for instance, to identify stum-
bles and generate predetermined recovery motions [22] [23],
although no conclusive results have been presented about the
effectiveness of these extensions.

In recent theoretical work, we proposed an alternative,
heuristic swing-leg controller that takes advantage of the
human leg’s double pendulum dynamics to regulate foot
placement [24]. In simulation, the controller places the foot
point of the double pendulum into desired ground targets
for a wide range of initial conditions and in the presence
of substantial gait disturbances. In later work, this controller
was reformulated to use virtual muscle actuators instead of
ideal torque sources at the joints [25], and integrated into
a muscle-reflex model of human locomotion [26]. Despite
lacking central processing, the model walked over level and
rough terrain, up stairs, and over obstacles. An initial evalua-
tion of this muscle-reflex control on a transfemoral prosthesis
suggested that this control can also generate qualitatively
normal walking patterns in human-in-the-loop hardware [27].
While this performance suggests the proposed controls may
enable robust foot placement in legged systems, it remains
unclear how well they transfer from simulation to physical
robot hardware and how the foot placement performance
compares to that of widely used robotic limb controls.

In this paper, we transfer the proposed swing-leg controls
to robotic hardware and evaluate their ability to regulate foot
placement both when the leg’s motion is undisturbed and when
unknown obstacles are encountered during swing. For this
transfer and evaluation, we extend our previous research on
the implementation of the idealized swing-leg controller on
robotic hardware [28] to include the neuromuscular control,
to perform a comparison of both proposed controls against a
benchmark impedance control in the presence of disturbances,
and to extend this comparison in simulation to a generalized
benchmark impedance control which incorporates a motion
library to account for a range of target angles. Specifically, we
compare the foot placement accuracy, swing duration, response
behavior, and human-likeness of robotic leg testbeds under
three swing-leg control strategies: the proposed idealized con-
trol, its neuromuscular reformulation, and a benchmark joint
impedance control for powered prosthetic devices [29]. Work
in this paper not only evaluates the proposed controls’ relative
performance to other controls in the context of benchmark
impedance control, but also further explores the scalability of
the proposed controls compared to existing methods used to
regulate the motion of powered legged systems.
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Fig. 1. Swing-leg control. (a) Task sequence. (b) Model geometry. (c) Active
muscles during neuromuscular swing-leg control tasks. GLU: Gluteus. HFL:
Hip Flexor. BFsH: Biceps Femoris Short Head. RF: Rectus Femoris. HAM:
Hamstring. GAS: Gastrocnemius. VAS: Vastus.

In section II, we first summarize the proposed swing control
both in its original form and its reformulation as a neuro-
muscular system. In section III, we then introduce the robotic
testbeds and the hardware evaluation experiments, which show
that the proposed controls achieve robust foot placements into
a range of ground targets with a single set of high-level control
gains. To further evaluate the proposed controls, we present
high-fidelity simulations of the testbeds in section IV, and
show that, compared to the implemented impedance control,
the proposed swing-leg controls are highly scalable. Based on
these findings, we finally discuss the potential of the identified
limb controllers to help improve locomotion in legged robots
and powered prostheses in section V.

II. REVIEW OF PROPOSED CONTROL

A. Idealized swing-leg control

The swing-leg control proposed in [24] accomplishes foot
placement into ground targets via combined hip and knee
controls that are divided into three sequential tasks: leg flexion
for ground clearance, leg advancement to a placement target,
and leg extension until ground contact (Fig. 1a). Instead of
tracking predefined joint trajectories to realize this sequence,
the proposed control is based on heuristics. This approach
is adopted for two reasons. First, tracking requires prede-
fined motion libraries, which may not handle unexpected
disturbances well. Second, a heuristic control approach can
deliberately take advantage of favorable passive dynamics that
reduce required motor torques.

The heuristics are developed using the leg length l and the
leg angle α as the underlying coordinates of the swing leg
double pendulum with l = 2lt sin(φk/2) and α = φh−φk/2,
respectively, assuming equal thigh and shank lengths (Fig.
1b). This coordinate transformation from the hip and knee
angles, φh and φk, allows for a simple interpretation of the
sequential control tasks. In addition, the proposed control is

largely decoupled into distinct hip and knee controls, enabling
its future use in modular powered prostheses. For the proposed
controls, extension and flexion torques correspond to positive
and negative torques, respectively.

1) Hip control: Hip control is active throughout swing. Its
primary function is to drive the leg angle into a target angle
αtgt using

τh = kαp (αtgt − α) − kαd α̇, (1)

where kαp and kαd are proportional and derivative gains.
The target angle represents the ground target and is a free
parameter. The hip control applies an additional torque τ iiih
during late swing, which counters the effect of leg braking
torque generated by the knee controller on the hip motion as
τ iiih = −2τ iiik . This term is further explained in the following
section.

2) Knee control: The knee control regulates the leg length
l. It is separated into three sequential tasks by a finite state
machine (Fig. 1a). In the first task, the goal is to flex the leg
to a predefined ground clearance length lclr. Instead of active
regulation, however, passive double pendulum dynamics are
exploited to achieve this goal. This leads to a control

τ ik =

{
kiα̇ α̇ ≤ 0

0 α̇ > 0
, (2)

where active knee flexion is provided only if the leg moves
forward (α̇ ≤ 0). The gain ki determines flexion strength in
proportion to the speed of forward motion. If α̇ > 0, the knee
is flexing passively and no action is needed to achieve lclr.

Once the leg has flexed sufficiently (l < lclr), the knee
control switches to the second task of maintaining leg length
with

τ iik =


−kiiφ̇k φ̇k ≤ 0

−kiiφ̇k(α− αtgt)(φ̇k + α̇) φ̇k > 0 & φ̇k > −α̇
0 otherwise

.

(3)

Knee flexion (φ̇k ≤ 0) is opposed with pure damping (deriva-
tive gain kii). Damping is also applied to slow down knee
extension (φ̇k > 0) but relaxed in proportion to how close the
leg is to its target angle and how fast it approaches this target.

The knee control switches to the final task of braking and
extending the leg once the leg angle passes a threshold αthr =
αtgt + ∆αthr. A stopping torque

τ iiik =

{
−kstp(αthr − α)(1 − α̇

α̇max
) α < αthr, α̇ < α̇max

0 otherwise

(4)

is applied that is inspired by nonlinear contact models and
acts like a virtual wall [30] [31]. The parameters kstp and
α̇max describe the stiffness and damping of this virtual wall
interaction. Once the leg angular velocity has slowed to zero,
α̇=0, a knee extension torque

τ iii
′

k = τ iiik + kext(l0 − l) (5)

is added to ensure the leg extends and seeks ground contact
at the end of swing (proportional gain kext, l0 = lt + ls).
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B. Neuromuscular interpretation

The neuromuscular interpretation of the above control, orig-
inally presented in [25], embeds the swing-leg control (Eqs.
1-5) for an anthropomorphic leg model with simulated mono-
and bi-articular muscle actuators. These muscle actuators can
only pull and are activated by physiologically plausible reflex
loops (Fig. 1c). We pursue this interpretation in addition to the
idealized control implementation as the inclusion of muscle
morphology and neural control limitations in the controller
could lead to more human-like motion patterns, an outcome
important to amputee locomotion. Specifically, the following
virtual muscle groups are implemented in this neuromuscular
controller: gluteus (GLU), hip flexor (HFL), biceps femoris
short head (BFsH), rectus femoris (RF), hamstring (HAM),
gastrocnemius (GAS), and vastus (VAS).

The muscles are modeled as Hill-type muscles with a non-
linear relationship between their joint torque contribution, their
neural stimulation, and the leg geometry, τmj = f(φh, φk, S

m)
(joint index j, muscle index m) [30]. Muscle stimulations are
generated by reflex control loops and take the general form

Sm(t) = Sm0 +
∑
n

Gmn P
m
n (t− ∆tmn ), (6)

where n is the index of the muscle contributing a reflex loop
to the stimulation of muscle m, Gmn is the reflex gain, Pmn
is the proprioceptive signal, and ∆tmn is the reflex delay.
Proprioceptive signals are either length Lmn or velocity V mn
of muscle n, and are modeled as

Lmn = lnce − lnoff and V mn = vnce − vnoff , (7)

where lnce and vnce are the muscle’s contractile element length
and velocity, respectively, and lnoff and vnoff are offsets. In
particular, the length and velocity signals of the bi-articular leg
muscles HAM and RF can be used to interpret the leg angle
and leg angular velocity (see Fig. 1 for muscle names and
abbreviations), the length and velocity signals of the mono-
articular knee muscles VAS and BFsH can be used to interpret
knee angle and velocity, and the length and velocity offsets can
be used to interpret threshold values.

1) Neuromuscular hip control: The hip control is inter-
preted in the neuromuscular model by mimicking the propor-
tional term in Eq. 1 with stimulations of the hip extensor and
flexor muscles (GLU and HFL),

SGLU (t) = SGLU0 +GGLUHAML
GLU
HAM (t− ∆tGLUHAM ), (8)

SHFL(t) = SHFL0 +GHFLRF LHFLRF (t− ∆tHFLRF ), (9)

based on length reflexes from the bi-articular leg muscles
(HAM and RF). As muscle behavior is automatically damped,
the explicit damping term of Eq. 1 is neglected.

C. Swing-leg testbeds

1) Neuromuscular knee control: The first control task (Eq.
2) is realized by stimulating the mono-articular knee flexor
BFsH with a reflex based on the velocity of RF,

SBFsH,i(t) = GBFsHRF V BFsHRF (t− ∆tBFsHRF ), (10)

(a) (b)

GLU HFL

BFsH
VAS

BFsH

HFL

VAS

GLU HAM

Fig. 2. Hardware testbeds RNL 2 (a) and 3 (b) for evaluating swing controls.

with vRFoff = 0. For the second control task, knee flexion (first
line in Eq. 3) is counteracted with the stimulation of RF based
on a stretch velocity reflex from VAS,

SRF,ii(t) = GRFV ASV
RF
V AS(t− ∆tRFV AS), (11)

and knee extension is resisted with the stimulation of BFsH
based on its own velocity reflex,

SBFsH,ii(t) = GBFsHBFsHV
BFsH
BFsH (t− ∆tBFsHBFsH)M. (12)

Here, M mimics the relaxation terms in Eq. 3 with additional
reflexes based on the length of RF and the velocities of BFsH
and RF,

M =LBFsHRF (t− ∆tBFsHRF )×
[V BFsHBFsH (t− ∆tBFsHBFsH) + V BFsHRF (t− ∆tBFsHRF )]. (13)

The third control task (Eq. 4) is primarily realized with the
bi-articular HAM, which is stimulated by its own length reflex,

SHAM,iii(t) = GHAMHAML
HAM
HAM (t− ∆tHAMHAM ). (14)

If this stimulation surpasses a threshold Sthr, BFsH and GAS
are additionally recruited to assist in braking with

SBFsH,iii(t) = GBFsHHAM [SHAM,iii(t) − Sthr], (15)
(16)

SGAS,iii(t) = GGASHAM [SHAM,iii(t) − Sthr]. (17)

Additionally, the mono-articular knee extensor VAS is stimu-
lated by its own stretch reflex,

SV AS,iii(t) = GV ASV ASL
V AS
V AS(t− ∆tV ASV AS), (18)

to embed Eq. 5 once the leg angular velocity has slowed to
zero.
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Fig. 3. Drivetrain schematic of RNL series elastic actuators.

TABLE I
SEA CAPABILITIES. THE SEAS MIMIC MAJOR LEG MUSCLES. THE

MAXIMUM TORQUES AND SPEEDS ARE DYNAMICALLY SCALED
ACCORDING TO [32].

τmax
j (Nm) θ̇max

j (rpm) ntot ks (Nm/rad)
GLU 90 109 72 44.5
HFL 90 109 72 48.9

HAM 90 109 72 44.5
VAS 45 217 36 49.3
GAS 10 200 42.5 23.9

III. EXPERIMENTAL EVALUATION

The controls presented in the previous section achieve robust
swing-leg placement in simulation [24] [25], but it is unclear
how well they transfer to robotic hardware. Furthermore, it
is unclear how the performance of the proposed controls
compares to impedance control [29], the benchmark control
method used to regulate robotic limb motions. The following
sections present the “Robotic Neuromusuclar Leg” (RNL)
locomotion testbeds and report on the experiments used to
evaluate the performance of the proposed swing-leg controls
in hardware.

RNL2 and RNL3 are legged robotic test platforms used to
evaluate the proposed swing-leg controls on hardware (Fig. 2).
The robots are dynamically scaled, antagonistically actuated
robotic legs with translational joint compliance at the hip
and knee. Their weight, size, and actuation requirements are
based on dynamically scaled segment masses and lengths of a
neuromechanical model of human locomotion [30], which is
further described in [32].

The joints of the robots are antagonistically actuated by
series elastic actuators (SEAs) that attach to the joints via
cable-drives. Cable-driven SEAs mimic major muscle tendon
units of the human model, which can go slack and enable
truly passive swing-leg dynamics. Cable drives also enable
the relocation of actuators away from joints, resulting in more
human-like segment mass distributions. In total, RNL2 and
RNL3 are actuated by four and five SEAs, respectively. The
maximum joint torque τmaxj , maximum joint speed θ̇maxj ,
total gear ratio from rotor shaft to joint ntot, and the spring
stiffness ks, of each SEA are summarized in table I. The RNL3
testbed is derived from the RNL2 platform. To retain dynamic

similarity between the test platforms and human legs, bi-
articular actuation, a key aspect of the neuromuscular control
scheme, was implemented mechanically using an additional
series elastic actuator that represents the hamstring. This
required the robot’s joints to be redesigned to accommodate a
a bi-articular actuator cable that spans both the hip and knee
joints. This is the key functional difference between the two
platforms used to evaluate the proposed control schemes.

All SEAs follow the same drivetrain layout, using electric
DC motors that are selected to meet the desired maximum joint
torque and speed targets while remaining within the specified
size and weight envelope (Fig. 3). The robots’ GAS actuators
use a single DC motor (Maxon Motor AG, RE30); all other
actuators active during swing-leg control use two mechanically
coupled DC motors for compactness (RE40). Torsional springs
serve as the compliant elements of the SEAs and are located
after the first gear stage. Off-the-shelf spring couplers are used
as the SEAs’ compliant elements (Ruland Manufacturing Co.,
GAS: FCMR19-5-5-A; all others: MWC25-6-6-SS).

Sensing and actuator control is implemented as a real-time
1kHz system using Simulink Realtime software (Mathworks,
Inc.) and EtherCAT motor controllers (Advanced Motion
Controls, DZEANTU-020B0808B, DZEANTU-040B0808B).
Behavior control is also implemented in Simulink Realtime,
operating at 1kHz for idealized swing-leg and impedance
control and at 5kHz for neuromuscular control. SEA torque
measurements in RNL2 are realized with two absolute rotary
encoders (Renishaw PLC, RM22SC 13B) located on either
side of the spring and are fed asynchronously to the target ma-
chine using a micrcontroller (Atmel Corporation, ATmega328-
PU). SEA torque measurements in RNL3 are realized with
two incremental encoders (US Digital, E2-5000-197-IE-D-D-
B) located on either side of the spring and are fed to the target
machine using a microcontroller which acts as an EtherCAT
device (Atmel Corporation, ATxmega128a1) [33].

A. Behavior control implementation

Idealized swing-leg control and impedance control are
implemented on RNL2 using its four antagonistic hip and
knee actuators (Fig. 2a). These controls generate desired net
joint torques, which are distributed to the corresponding SEA
antagonists based on sign, with positive torques representing
extension torques. The actuators track these desired torques
with a velocity-based control scheme [34]. Details of the
idealized swing-leg behavior control have been provided in
section II-A (Eqs. 1-5). For the comparison with impedance
control, the swing-leg portion of the control presented in [29]
is used. In our implementation of this control, joint torques

τj = k1(θj,des − θj) − k2θ
3
j − bθ̇j (19)

are commanded to the SEAs of RNL2 based on the measured
position θj and velocity θ̇j of each joint j, where the parame-
ters k1, k2 and b realize virtual spring-dampers that drive the
hip and knee joints toward desired set-points θj,des. The set
points and the other parameters are provided by a two-state
state machine, which transitions from the first to the second
state when the knee velocity of RNL2 becomes larger than
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Fig. 4. Swing-leg motion experiments. (a) Experiment schematic keyframes:
swing initialization, obstacle collision (disturbed experiments only), heel-
strike. The geometry of a virtual foot constrained to be perpendicular to the
shank is used to initialize the virtual ground location. Red: Ankle point. (b)
RNL3 under neuromuscular swing-leg control during undisturbed experiment.

zero during the swing (transition from knee flexion to knee
extension).

The neuromuscular swing-leg control is implemented on
RNL3. RNL3 has five SEAs that represent the mono-articular
hip muscles (GLU and HFL), the mono-articular knee mus-
cles (VAS and BFsH), and the bi-articular hamstring (HAM)
(Fig. 2b). The neuromuscular control (compare section II-B,
Eqs. 9-18) generates a desired actuator torque for each of these
muscle SEAs. In addition, the controller generates desired
torques for the bi-articular rectus femoris (RF, eq. 11) and
gastrocnemius (GAS, eq. 17), which RNL3 does not include
in its current state of development. Instead, the effect of RF in
the neuromuscular controller is simulated on RNL3 by adding
its torque contributions simultaneously to the desired torques
of the hip flexor and knee extensor muscle actuators (HFL
and VAS, respectively), and the effect of GAS is simulated by
adding its torque contributions to the desired torques of the
knee flexor actuator (BFsH).

B. Experiment design

Two sets of experiments are used to evaluate the perfor-
mance of the proposed controls and impedance control (Fig.
4). The first set tests the ability of the controllers to place

TABLE II
IDEALIZED SWING-LEG CONTROL PARAMTERS.

parameter value parameter value
kαp 38.7 Nm/rad kext 260.9 N
kαd 0.2 Nms/rad α̇max 14.1 rad/s
ki 2.8 Nms/rad ∆αthr 10◦

kii 0.1 Nms/rad lclr 2 cm
kstp 3.7 Nm/rad

TABLE III
NEUROMUSCULAR CONTROL PARAMETERS. OTHER PARAMETERS

ADAPTED FROM [30] AND [25] USING THE DYNAMIC SCALING LAWS IN
[32].

parameter value parameter value
GGLUHAM 0.14 GBFsHHAM 3.7
GHFLRF 2.3 GGASHAM 2.6
GBFsHRF 0.54 GV ASV AS 0.77
V BFsHRF 0 GHAMHAM 1.9
GBFsHBFsH 1.0 Sthr 0.08

the foot into desired ground targets during undisturbed swing.
Each controller is tested for a range of target angles αtgt from
65◦ to 90◦ with five trials per angle. The second set repeats
the evaluation with an unexpected obstacle presented in early,
mid, and late swing, respectively (Fig. 4a). The obstacle is
a 600g wooden block on a set of rockers, approximating a
tripping disturbance as the robot collides with the obstacle. In
both sets of experiments, foot placement accuracy is assessed
as the mean error between the desired and achieved leg angle
at touchdown, and human-likeness of the control is assessed by
comparing the resulting swing duration, response to unknown
disturbances, and generated ankle point trajectory to the du-
ration, obstacle response, and ankle trajectory of the human
swing-leg in walking. Human reference data was extracted
from motion capture (Vicon Motion Systems Limited, MX40)
of a single subject walking at a self-selected speed of 1.3ms−1

(compare Fig. 6).
All experiments are initiated from a neutral, straight down

configuration of RNL2 or RNL3. A feed-forward torque that
is constant across all experiments then moves the leg into
an initial pose of α0 = 118◦ with initial hip extension and
knee flexion joint velocities mimicking the state of a human
leg at swing initiation [24]. Once this pose is reached, the
swing-leg controls initialize and regulate motion until the robot
strikes a virtual ground, whose location is also initialized at
this time. The location of the virtual ground is based on the
geometry of a virtual dynamically scaled, anthropomorphic
foot segment with a toe and heel, which is assumed to be
locked in a perpendicular pose to the shank (Fig. 4). Across
all experiments, the virtual ground is 5.25±0.2cm below the
starting height of the ankle point after swing-leg control
initialization.

For all swing-leg controllers, the control parameters are
hand-tuned to achieve undisturbed swing motions to a target
angle αtgt = 70◦, which corresponds to the landing angle
observed in undisturbed, normal human walking [24]. RNL
robots are assumed to have equal, nominal shank and thigh
lengths of lt = ls = 27cm. Additional control parameters
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TABLE IV
IMPEDANCE CONTROL PARAMETERS.

parameter value parameter value
khip,i1 29.9 Nm/rad khip,ii1 15.9 Nm/rad
khip,i2 18.6 Nm/rad3 khip,ii2 84.9 Nm/rad3

bhip,i 0 Nms/rad bhip,ii 0 Nms/rad
θihip,des 170◦ θiihip,des 140◦

kknee,i1 0.5 Nm/rad kknee,ii1 71.8 Nm/rad
kknee,i2 4 Nm/rad3 kknee,ii2 2 Nm/rad3

bknee,i 0 Nms/rad bknee,ii 0 Nms/rad
θiknee,des 120◦ θiiknee,des 160◦

(a)

(b)

(d
eg
)

(d
eg
)

Fig. 5. Hardware foot placement error shown for the idealized control (light
gray), neuromuscular control (dark gray), and impedance control (white). (a)
Mean errors for the tuned-for target angle αtgt = 70◦ achieved without
obstacle encounter (none) and when an obstacle is present (early, mid, late).
(b) Mean errors for the entire range of tested leg target angles αtgt = 65◦

to 90◦. Bracketed lines show one standard deviation.

are shown in tables II-IV. These parameters are used in all
subsequent undisturbed and disturbed locomotion experiments.

C. Hardware results

Both idealized and neuromuscular swing-leg controllers
can regulate foot placement into a range of desired ground
targets in hardware (Fig. 5). The proposed controllers place
feet into the tuned-for ground target of αtgt = 70◦ with
comparable accuracy to impedance control, both when the
motion is undisturbed as well as when the robots encounter
unknown disturbances in early, mid, and late swing (Fig. 5a).
In addition, the variability of the foot placement achieved
with the neuromuscular control in undisturbed swing (standard
deviation, s.d., of ±0.5◦) was similar to the foot placement
variability observed in our subject data (αtgt = 73.0 ± 0.8◦,
n=28), whereas the variability of both idealized swing-leg
control and impedance control was larger (s.d. of ±2.3◦ and
±2.4◦, respectively). Due to impedance control’s formulation
as a set-point based torque controller that drives joints toward
pre-specified angles (compare Eq. 19), it is not possible to
use the same set of gains to place feet into a range of
ground targets. Both the idealized and neuromuscular swing-
leg control, on the other hand, enable foot placement into
a range of ground targets by changing only the high-level
αtgt control parameter and retain foot placement accuracies

None Early

Fig. 6. Undisturbed (left column) and disturbed ankle trajectories with
αtgt = 70◦. Dashed line indicates obstacle location. Trajectories are
normalized to subject and robot leg length, respectively (mean trajectories
in black and individual traces in gray). The arrows highlight the visible
disturbance responses to obstacle encounters in early swing. For the idealized
control, this response consistently mimicked an elevation strategy. For the
neuromuscular control, elevation was observed only in some cases.

comparable to the tuned-for “normal walking” condition (Fig.
5b).

Among the three tested swing-leg controls, the proposed
neuromuscular control generates the most human-like swing
leg behavior (Fig. 6). While trajectories generated by both
the proposed neuromuscular control and impedance control
are qualitatively similar to human trajectories for undisturbed
swing, two-dimensional correlation (MathWorks MATLAB,
corr2) between the human trajectory and each hardware tra-
jectory of undisturbed swings shows that the neuromuscular
control has the highest correlation (correlation coefficient
R=0.89), followed by impedance control (R=0.81) and ideal-
ized control (R=0.71) (Fig. 6). Second, both the idealized and
the neuromuscular control show responses to sudden swing-
leg disturbances that can be qualitatively similar to human
leg responses. Under idealized control, the robot performed
an explicit foot point retraction and lifting in 88% of the
experiments across the tested range of leg placement targets,
akin to an elevation strategy observed in humans during
trips that occur in early swing [35]. Under neuromuscular
control, this early elevation strategy was observed in only
13% of the experiments, while the robot held the leg height
after encountering an obstacle in 53% of experiments. Both
controllers showed evidence of a lowering strategy for obstacle
encounters in late swing (not shown in Fig. 6). In contrast, the
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Fig. 7. RNL3 simulation. (a) Screenshot of RNL3 model. (b) Undisturbed
trajectory experiment for αtgt = 70o with traced ankle point trajectory (red
solid) and virtual ground (dotted) shown.

foot point trajectories for impedance control remained similar
in all experimental conditions. This lack of a dynamic response
stemmed from the fact that the impedance controller is based
on joint angle set-points unaffected by obstacle encounters.

Finally, the swing duration of the neuromuscular control
is closest to the swing duration of human walking, although
all three controllers produce swing phases that last too long.
Accounting for the dimensions of the robot testbeds, the
dynamically scaled human swing duration should last between
180 ms and 360 ms for normal walking speeds [24]. With a
duration of 415 ± 4ms neuromuscular control comes closest
to this range, while the idealized control (519 ± 56ms) and
impedance control (578 ± 32ms) last about 15% and 28%
longer than the neuromuscular control. The difference in
the swing duration between humans and the neuromuscular
control could be related to motor saturation that we observed
in the hip flexion actuator (HFL). The primary function of this
actuator is to drive the leg towards the desired target, thus
determining swing duration. However, further experiments
with a stronger HFL would be necessary to test this hypothesis.

IV. FURTHER EVALUATION IN SIMULATION

The hardware experiments in the previous section reveal that
all three investigated controls can place the swing-leg foot
with comparable accuracy when tuned for a specific target
location (Fig. 5a); however, the experiments also show that
the idealized and neuromuscular controls generalize to a wide
range of ground targets using a single gain parameter set
(Fig. 5b). To cover the same range of targets with similar
performance using impedance control would require a motion
library that contains explicit gain sets for various ground target
locations across the desired foot placement range. These sets
could serve as interpolation nodes to calculate appropriate
impedance control gains for foot placement targets across the
foot placement range. However, it is unclear how many explicit
gain sets would be required across this range to achieve similar
performance to the proposed controls. Due to the in-situ tuning
process used to generate hardware gain sets, it is impractical
to investigate this question on the testbeds directly. As such,

we developed high-fidelity simulations of the robots, whose
control parameters could be tuned via optimization. These
simulations are used in the following section to investigate
how extensive an impedance control motion library must be in
order to achieve similar performance to the proposed controls
over the foot placement range.

A. Simulated testbeds

The simulations of the RNL2 and RNL3 testbeds are
developed in Simulink Simscape Multibody (Mathworks, Inc.)
(Fig. 7). Besides replicating the behavior and motor controls
used in the hardware experiments, the simulations model the
electro-mechanics of the testbeds. Motor electrical dynamics
are modeled as

V − iR− L
di

dt
− kEMF θ̇m = 0, (20)

where V , i, R, L, kEMF , and θ̇m are the motor voltage,
current, resistance, inductance, back-EMF constant, and motor
velocity [36]. A ±48V saturation simulates voltage limits
of the robots’ motor controllers and voltage commands are
generated with a PID loop operating on the difference between
desired and measured motor velocity. The drivetrain stages
(Fig. 3) are modeled as separate physical, interacting bodies,
with the rotational inertias of each stage estimated from CAD
models. Coulomb friction τ cf is applied to every bearing stage,
whose coefficients are calculated from linear regression of
experimental characterization data using τ cf = µisgn(θ̇i),
where µi is the offset of Coulomb friction at each drivetrain
stage i with a velocity θ̇i. Similarly, viscous friction is modeled
for the robots’ hip and knee joints with friction coefficients
determined experimentally. The torsional stiffness values of
the SEA springs are calculated from testbed experiments using
analog compression load cells (FC22, 100lbf: Measurement
Specialties) (Tab. I). The robots’ cable drives, which connect
SEA drivetrain outputs to the joints, are modeled as unidirec-
tional series spring-dampers with a stiffness of 10kN/m and a
damping constant of 500Ns/m.

B. Simulation experiments and results

We use the testbed simulations to study the effect of the
motion library size on the placement accuracy for ground
targets αtgt ranging from 60o to 90o. First, we define three
libraries differentiated by the number of nodes (target angles)
for which impedance control is tuned: 3 nodes (70o and
the boundaries 60o and 90o), 4 nodes (60o to 90o in 10o

increments), and 7 nodes (60o to 90o in 5o increments).
Second, we tune the parameters of the impedance controller
(Eq. 19) for each node with optimization (CMA-ES, [37]).
The cost function used to tune the parameters is

J(χn) =

4∑
i=1

(αitgt − αitd)
2, (21)

where χ is the vector of tuned parameters corresponding to
node n, i is the index for the specific swing-leg case type en-
countered in hardware experiments (undisturbed swing, early-,
mid-, and late-disturbance) that are described in Sec. III-B,
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Fig. 8. Simulation foot placement errors of the proposed controls and
impedance control with a motion library for an αtgt range from 60o to 90o.
Idealized swing-leg and impedance control simulation performed with the
RNL2 model. Neuromuscular swing-leg control performed with the RNL3
model.

αtgt is the desired foot placement target expressed as a
touchdown angle, and αtd is the measured angle at touchdown.
Finally, we evaluate the placement accuracy of the impedance
control with motion libraries by simulating the hardware
experiments over the range from 60o to 90o in 1o increments.
For inter-node target angles not stored in the libraries, the
control draws from spline-interpolated parameters.

For a direct comparison between impedance control and
the proposed controls, we follow a similar procedure with the
idealized and neuromuscular controls. Instead of generating a
motion library, however, we simultaneously optimize a single
set of control parameters over all the experimental conditions
used for tuning the corresponding library of impedance con-
trol. For instance, to compare to the impedance controller
with a 3 node library, we tune the control parameters of the
idealized and neuromuscular controls by minimizing the total
placement error over 12 tuning experiments (four disturbance
trials per target angle) to generate one set of control param-

eters. Thus, as in the hardware experiments (Sec. III-C), the
idealized and neuromuscular controls each only have a single
set of parameters to execute foot placements into the entire
range of target angles.

Figure 8 summarizes the results of the comparison for
leg placements throughout the entire range of target angles.
Impedance control achieves a performance comparable to ide-
alized and neuromuscular control for the disturbed conditions
already with a 3 node library; but although the mean foot
placement error decreases with an increase in size in the
motion library, even at 7 tuning nodes, impedance control
cannot match the performance of the proposed controls for
undisturbed swing. In contrast, the foot placement errors for
the idealized and neuromuscular controls remain about the
same independent of the size of the tuning set, suggesting
that a small set could suffice in practical applications. Indeed,
tuning the proposed controls for a single locomotion condition
that corresponds to nominal, undisturbed walking, enabled the
testbeds to accurately place feet into ground targets over the
tested range. In addition, substantially smaller standard devia-
tions for the errors in undisturbed swings and in swings with
early disturbance indicate that the placement performance of
the proposed controls is less sensitive than that of impedance
control.

V. DISCUSSION

We investigated the performance of a novel swing-leg
control in robotic leg testbeds. In hardware experiments on
undisturbed swings and swings with unexpected obstacle
encounters, we found that this control leads to robust foot
placement of anthropomorphic robotic legs within a range of
landing leg angles observed in human gait (Fig. 5). Impedance
control, the benchmark alternative, achieved a similar place-
ment performance at tuned-for targets, but requires a mo-
tion library to accommodate target ranges. In simulations
of the robotic leg testbeds, we found that such a library-
based impedance control can match the performance of the
proposed controls only for disturbed swing motions (Fig. 8).
The results suggest the proposed control as a candidate control
for powered leg prostheses that need to react to unexpected
tripping disturbances and to adapt foot placement to help
amputees recover balance in locomotion.

The proposed controls likely outperform impedance control
because the former considers the global pose of the leg,
and because they were designed around the coupled, passive
dynamics of a segmented leg. In impedance control, joint
torque is generated based only on the motion of the local
joint [17]. As a result, impedance control resembles a local
and decoupled approximate solution about nominal swing tra-
jectories that is sensitive to changes in the set point, in this case
the target angle, despite the addition of a motion library (first
column in Fig. 8). In contrast, the proposed controls consider
both the global information about the leg and the inertial
coupling effects across joints. The controls are formulated
around the global coordinates of the leg angle and leg length
(α, l), and the nonlinear feedback terms for the knee joint
controls take advantage of inertial effects generated by the hip
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motion (for instance, Eqs. 2–4); thus, the controllers become
less dependent on the actual trajectory, achieving better foot
placement accuracy with fewer control parameters for the
investigated range of target angles. Note, however, that in the
neuromuscular reformulation, the placement performance after
recovery from disturbances does not seem to benefit from this
advantage (columns two to four, Fig. 8). It remains an open
question whether the proposed control strategy can improve
over the placement accuracy of other, more centralized swing-
leg control strategies, for instance those used in humanoid
robotics [10] [11].

Besides foot placement accuracy, a second advantage of the
proposed control is that it requires comparably few parameters
to be tuned. With the growing complexity of powered pros-
theses, tuning their controllers is becoming an ever increasing
challenge for clinical practice. Several alternative control and
tuning methods have been proposed to reduce the number of
parameters in stance [38] [39] [40]. The proposed controls
achieve a similar reduction for the number of parameters to be
tuned in swing (6 and 10 for the neuromuscular reformulation)
while adding behavior versatility and robustness. Impedance
control, on the other hand, already requires 16 parameters
without a motion library (4 parameters in Eq. 19 times two
phases for each joint), and would need considerably more
with a motion library. Tuning-free swing-leg controls have
also been recently proposed, but are kinematic in nature, en-
forcing motion patterns for undisturbed walking using virtual
constraints [41] and minimum jerk trajectories [42]. While
these controls enable users to dynamically walk at various
speeds, they require an a priori notion of what the swing-
leg motion will look like throughout the swing-phase, and
their ability to walk robustly in the presence of significant
motion disturbances has not been tested. As such, how the
performance of these controls compare to those presented in
this paper are unclear.

Whether a neuromuscular reformulation is preferable re-
mains an open question as well. In our experiments, this
control showed less placement accuracy while at the same time
requiring more parameters than the idealized version of the
proposed control. However, conforming with known properties
of human motor control including muscle actuation dynamics
and neural transmission delays, the neuromuscular reformu-
lation produced the most human-like swing behavior among
the investigated control strategies (Fig. 6). In applications like
prosthetics, where cosmesis is a concern, trading off accuracy
and parameter convenience against human-likeness may be
preferable, although clarifying the effect of this trade-off on
amputee gait will require experiments with amputee subjects
wearing an actual prostheses.

We are currently working towards such an experimental
evaluation on active prostheses in amputee gait. In preliminary
tests with one non-amputee user wearing a powered leg-
prosthesis prototype, we have found that the proposed control
reproduces normal walking patterns and effectively responds
to disturbances in early and late swing [27]. Although more
research will be needed to improve the control implementation
and to determine how well these results transfer to amputee
gait, they highlight the potential of the proposed and other

controls that consider global leg information for improving
balance recovery, which despite the advances in prosthetic
control and technology [43], remains one of the main concerns
for transfemoral amputees [44].
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