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Abstract—Current control approaches to robotic legged loco-
motion rely on centralized planning and tracking or motion pat-
tern matching. Central control is not available to robotic assistive
devices that integrate with humans, and matching predefined
patterns severely limits user dexterity. By contrast, biological
systems show substantial legged dexterity even when their central
nervous system is severed from their spinal cord, indicating that
neuromuscular feedback controls can be harnessed to encode
stability, adaptability, and maneuverability into legged systems.
Here we present the initial steps to develop a robotic gait testbed
that can implement and verify neuromuscular controls for robotic
assistive devices. The initial stage consists of an antagonistically
actuated two segment leg with a floating compliant joint. We
detail its electromechanical design and low level, velocity-based
torque control. Additionally, we present experiments that test the
leg’s performance during human-like high fidelity motions. The
results show that the robot can track fast motions corresponding
to 87% of the maximum performance limit of human muscle. The
experiments also reveal limitations of our current implementation
and we discuss solutions to overcoming them.

I. INTRODUCTION

Current approaches to leg control in locomotion either use
centralized planning and tracking or mimic predefined joint
motion patterns extracted from normal human gait. The first
approach is used in humanoids including Honda’s ASIMO and
AIST’s HRP-4 [11][18][27], but cannot be applied to robotic
assistance wherein the central human user’s state is unknown.
As a result, the second approach prevails in rehabilitation
robotics [17][2][12][13]. For instance, exoskeletons developed
for paralyzed patients enforce a limited set of pre-defined
motion patterns of normal human gait [21][1], which severely
constrains their functional dexterity. In part, this problem
can be overcome by combining motion libraries and pattern
recognition, as Sup et al. [30] demonstrated with a powered
legged prosthesis for speed and slope adaptation. However,
control strategies that generate the stability, maneuverability,
and adaptability needed for truly high mobility have not been
identified with this approach.

We seek to develop an alternative control approach to
powered legged systems that builds on decentralized neuro-
muscular control strategies of human locomotion. Animal and
human legs possess remarkable autonomy in behavior and
control. For example, decerebrate cats and rats have no brain
control over their legs, yet they seamlessly adapt to different
locomotion speeds on a treadmill and autonomously transition

between gaits [28][4][20]. Similar neuro-scientific experiments
reveal that, in biological systems, dexterous performance of
segmented legs is realized to a large extent by local feedback
controls that bypass central processing, and by biomechanical
designs that hardcode functional leg responses [5][24][14][7].
Recently, neuromuscular models of human locomotion were
developed, which are controlled by autonomous local feed-
backs without central planning, yet adapt to their environment
and show substantial robustness of locomotion[8][29]. Eilen-
berg et al. [6] have implemented part of this feedback control
in a powered ankle-foot prosthesis, resulting in a system that
adapts to the environment without requiring explicit terrain
sensing.

To generalize this approach to segmented powered legs,
we here present our initial steps of developing a robotic gait
testbed that can implement and test neuromuscular controllers
for robotic assistive devices. The testbed currently consists of
a half-human sized, two segment leg with two antagonistic ac-
tuators and a compliant floating joint. We detail the electrome-
chanical design and control of this robotic neuromuscular leg
(RNL) (sect. II and III), and present and discuss experimental
results that test the performance of the leg during human-like,
high-fidelity motions (sect. IV and V).

II. ELECTROMECHANICAL DESIGN

RNL is a half-human sized, two segmented, antagonistically
actuated robotic leg with joint compliance (Fig. 1). The
electromechanical design of RNL is driven by three themes:
dynamic similarity, antagonistic actuation, and leg compliance.

A. Dynamic Similarity

We aim to build a testbed that matches human leg per-
formance to develop neuromuscular controllers for powered
segmented legs. For cost and safety considerations we build a
robotic leg that is half the size and a quarter of the weight of a
human leg. To ensure that the dynamic behavior of our robot
matches human legs, we use dynamic scaling. Dynamic scal-
ing uses fundamental physical variables to define relationships
between a system’s quantities at different scales. This approach
was formalized by Buckingham [3] and is often applied in
aerospace and fluid engineering applications. In mechanical
systems, fundamental units are mass, length, and time. The
robot’s mass and length targets define these scaling factors
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Fig. 1: Robotic testbed development. (a) Major human leg muscles with monoarticular knee extensor and biarticular knee flexor
highlighted. (b) Testbed concept. (c) CAD assembly of initial stage. (d) Robotic implementation. For experiments, thigh was
rigidly coupled to mounting cage.

Human RNL Scaling Factor

Leg Length (m) 1 0.5 1/2
Thigh Length (m) 0.46 0.23 1/2
Shank Length (m) 0.54 0.27 1/2

Knee Radius (m) 0.06 0.03 1/2
Total Mass (kg) 80 20 1/4

Thigh Mass (kg) 8 2 1/4
Shank Mass (kg) 3.7 0.9 1/4

Foot Mass (kg) 1.2 0.3 1/4
Vas. Max Force (N ) 6000 1500 1/4
Vas. Max Vel (m/s) 0.96 0.68 1/4

Ham. Max Force (N ) 3000 750 1/4
Ham. Max Vel (m/s) 1.2 0.84

√
2/2

Max Joint Torque (Nm) 368 45 1/8
Max Joint Vel (rpm) 153 217

√
2

TABLE I: Mechanical performance goals. Human mechanical
properties dynamically scaled to RNL dimensions. Human
data taken from Winter [32].

as mrobot/mhuman = 1/4 and lrobot/lhuman = 1/2, respec-
tively. Since the robot is exposed to the same gravitational
field as humans, the relationship grobot = ghuman must hold,
resulting in a time scale of trobot/thuman =

√
1/2. Given

these fundamental unit scales, force, torque, and velocity
scale as Frobot/Fhuman = 1/4, τrobot/τhuman = 1/8, and
vrobot/vhuman =

√
2/2.

The performance envelope of human leg actuation is defined
by the maximum contraction velocity and maximum isometric
force that muscles can develop. We dynamically scale these
two parameters to identify the equivalent actuator no load
speed and torque requirements of RNL. The largest human
leg muscle is the vastus, a knee extensor located in the front
of the thigh (Fig. 1a). The dominating muscle used in knee
flexion is the hamstring, whose performance requirements are
lower than those of the vastus. (Tab. I).

B. Antagonistic Actuation

RNL uses antagonistic actuators, realized by cable driven
series elastic actuators (SEAs), which simultaneously meets
several design requirements: the ability to actively command

zero joint torque to allow passive dynamics, satisfying human
mass distributions, and actuation across floating joints.

SEAs were originally developed by Pratt and Williamson
[25] and are common in bipedal robots such as Spring
Flamingo developed by Pratt and Pratt [26] and M2 developed
by Paluska [22]. SEAs are characterized by a compliant
element between motor and load. This element decouples load
and motor inertia, which enables precise torque control with
highly geared motors (at the expense of system bandwidth),
including zero torque. SEAs have been combined with cable
drives in legged systems [10]. Using nondirect elements in the
drivetrain, like cable, belt, and chain drives, allows actuators to
be located away from the joint, ideal for realizing human-like
segment mass distributions. Unlike belt and chain drives, cable
drives can also go slack like human muscles, which allows
them to act across compliant segments.

The drivetrain of RNL’s SEAs is shown in Fig. 2b. With
a later technology transfer to prosthetic and orthotic devices
in mind, we limit ourselves to electric DC motors, focusing
on the Maxon RE line. Several motor configurations match
our design targets (Tab. II). The optimal combination of
low weight, low rotor inertia, torque, and speed is reached
by four mechanically coupled RE 30 motors. However, we
instead opt for two mechanically coupled RE 40 motors to
limit actuator complexity, at the expense of increased rotor
inertia. For compactness, we incorporate a custom three stage
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Fig. 2: RNL SEAs. (a) Drivetrain schematic (b) Drivetrain
assembly (c) Prototype



4x RE 30 2x RE 40

Gear Ratio 40 36
Total Weight (g) 952 960

Rotor Inertia (kgm2) 0.0221 0.03
Nominal Torque (Nm) 14.1 13.2

Stall Torque (Nm) 163 180
No Load Speed (rpm) 212 211
Nominal Speed (rpm) 194 194

TABLE II: SEA motor configurations. Optimal configuration
is comprised of four RE 30s. Two RE 40s meet the same
performance criteria with lower mechanical complexity, at the
expense of increased rotor inertia.

(a) (b) (c)

Fig. 3: Floating compliant knee joint. (a) Concept (b) Proto-
type (c) Close-up of implementation

drivetrain into our actuation system (Fig. 2a). The first stage
mechanically couples the motors with a 4:1 reduction; the
second stage orients the output shaft’s axis of rotation with
a 3:1 reduction. We locate a rotary spring coupling between
these stages. Currently, we use an off-the-shelf spring cou-
pler (Stock Drive Products) with a stiffness of 1.75Nm/rad
and a maximum torque rating of 1.4Nm. An additional 3:1
reduction is located between the SEA output shaft and joint,
connected via cable drive, for a total 36:1 gear reduction in our
drivetrain. The gear ratio of the external stage can be modified,
which allows us to use the same SEA for muscles with
different properties. We realize force measurements via two
absolute rotary encoders (RM22B: 9bit, magnetic, analogue
encoders; Renishaw PLC) located on either side of the spring.
Additionally, an incremental encoder on the shaft of one RE
40 measures motor velocity (RM22I: 9bit, magnetic, digital
encoder; Renishaw PLC). One motor controller (Solo Whistle,
Elmo MC) supplies the same current to both RE 40s. Currently
RNL uses two SEAs. One is located in the robot’s thigh,
simulating the vastus muscle; the other is located on the
mounting frame, simulating the biarticular hamstring muscle
(Fig. 1c).

C. Leg Compliance

Humans are not rigidly coupled kinematic chains, possess-
ing interjoint cartilage and soft tissue around bones. To capture
this aspect in RNL, we incorporate a floating joint design
into the robot (Fig. 3). The floating joint design connects
the robot’s thigh and shank. The joint is composed of two
rapid prototyped clamping plates (VeroWhitePlus, Objet Ltd.),

which hold the compliant element. The compliant element is
made from a two-part PMC-744 urethane rubber mix (Smooth-
on Inc.), which is cast into the clamping plates. A compliance
retainer, constructed from a brass spur gear, couples the joint’s
shaft and compliant element, and defines the floating center
of rotation of the knee joint’s axis. The retainer’s set screw
rigidly couples the thigh and joint shaft. This design restricts
rotational motion to only occur in the robot’s shank. An
RM22B encoder head is mounted on the joint shaft. The
corresponding encoder body is located on the shank. Relative
motion between the encoder head and body measures knee
position during leg movement.

III. VELOCITY-BASED SEA CONTROL

Our actuators generate desired torques using a velocity-
based SEA control scheme [31]. Pratt and Williamson [25]
originally approached SEA control from a torque-based per-
spective. Recently, an alternative SEA controller was proposed
by Wyeth [33], which modulates load torque, τl, using motor
velocity, ωm, as a control target instead of motor torque,

ωm = τl

(
1

Jls
+

s

ks

)
, (1)

where Jl is the load inertia and ks is the stiffness of the
compliant element. This approach is advantageous because
losses due to gear dynamics between the motor and spring do
not need to be considered. Since motor velocity corresponds
exactly to velocity at the drivetrain output, the velocity loop
automatically compensates for losses without additional tuning
of the outer control loop. In addition, the controller’s inverse
dynamics terms (Fig. 4) only require the first derivative of
motor position, which leads to increased system bandwidth,
since low-pass filters with higher cutoff frequencies can be
used.

Wyeth [33]’s formulation of velocity-based SEA control (eq.
1) requires load inertia to be known. For legged systems, it
is not clear what the load inertia is, as load dynamics con-
stantly change due to joint position and gait phase. However,
knowledge of load inertia is not necessary in the formulation
of a velocity-based SEA controller. Starting with Pratt and
Williamson [25]’s derivation, torque exerted by a spring due
to angular deflection is given as

τl = −ks(θl − θm) (2)

where τl is the torque applied to the load, ks is the spring
stiffness, and (θl-θm) defines the deflection of the spring be-
tween the load and motor side. To formulate torque control as
velocity-based control, we write motor position as a function
of motor velocity θm = ωm/s, and resolve eq. 2 to

ωm = τl/kss+ θls. (3)

Here Jl does not need to be known. Fig. 4 shows a schematic
implementation of this velocity control, in which eq. 3 has
been implemented as feedforward compensation, P (s) is PD
feedback compensation for model uncertainty, and C(s) rep-
resents the motor controller.
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Fig. 4: Velocity-based SEA control system model.
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Fig. 5: High fidelity motion experiments. RNL knee position, velocity, and antagonistic actuator torques for walking trajectories
corresponding to (a) 1.0x, (b,c) 1.6x, and (d) 1.8x nominal walking speed trajectories. In experiments, motion occurred between
4s and 8s. Plots show mean±s.d. for 10 repetitions. Red lines: commanded trajectories. Blue lines: measured trajectories. Green
lines: ±s.d. of measured trajectories.

IV. EXPERIMENTS

The electromechanical design of RNL includes custom
built antagonistic actuators, an alternative velocity-based SEA

controller, and a floating compliant knee joint. RNL is intended
as platform to develop neuromuscular controllers that embed
human-like performance. To verify if our design and control



Fig. 6: RNL knee position and antagonistic actuator torque during co-contraction experiments for (a) 0% (b) 5% (c) 10% (d)
15%. Red lines: commanded trajectory. Blue lines: measured trajectory. Green lines: External impulse disturbances to instigate
shank oscillation.

implementations meet this performance, we devise two experi-
ments. The first experiment tests if the robot can generate fast,
high fidelity motions that characterize human locomotion. The
second experiment targets the ability to execute antagonistic
co-contraction often seen in neuromuscular control.

Since RNL currently only has actuators simulating the
hamstring and vastus, we focus on the robot’s knee for this
evaluation. To simulate the inertial effects of a foot segment,
we attach a weight to the bottom of RNL’s shank, increasing
its total mass to 1.1kg. The resulting mechanical properties of
the shank segment are lcom = 0.107m and Js = 0.005kgm2,
where lcom is the distance of the shank’s center of mass
position from the knee pivot and Js is the inertia.

A. High Fidelity Motion Experiments

We evaluate RNL’s motion fidelity using dynamically scaled
human joint trajectories. We first numerically differentiate
knee angular position data, φrefk , tabulated in Winter [32] to
generate reference trajectories for joint velocity, φ̇refk , and ac-
celeration, φ̈refk , observed in human walking. The trajectories
are median filtered (filter order = 10) to eliminate artifacts
resulting from the differentiation. Next, we use dimensional
scaling to adapt the trajectories to RNL’s scale. The resulting
joint trajectories correspond to normal human walking speed
(1.0x nominal trajectory). We scale these trajectories to range

between 1.0x and 2.0x speed of the nominal trajectory, the
latter of which reaches maximum knee joint velocity (Tab. I).

With these references, we implement a tracking control
that outputs desired actuator torques. The controller includes
feedforward torque trajectories, Jsφ̈

ref
k , gravity compensation,

and PD feedback compensation, kp(φ
ref
k −φk)+kd(φ̇

ref
k −φ̇k),

where kp = 15 and kd = 0.01kp are the position and velocity
feedback gains. The gains are kept constant throughout all
experiments. φk and φ̇k are measured by the absolute encoder
on RNL’s knee joint. The four components are summed to
generate net joint torque. The resulting actuator flexion and
extension torques are commanded to the corresponding SEA
via the velocity-based control scheme described in section III.
To avoid cable slack, each SEA applies a minimum 0.5Nm
torque to the joint at all times. Fig. 5 summarizes the results of
the motion experiments. Tabs. III and IV list the mean cross-
correlation coefficients and signal time delays over the trials
for all traces. We observe that the executed joint position and
velocity trajectories closely follow the desired trajectories for
trials up to 1.6x, with position and velocity correlation coef-
ficients greater than 0.90 and 0.80, respectively. The largest
differences between desired and commanded position occur
during periods of knee extension at 1.6x, with a maximum
error of 7.3◦. Velocity shows a similar tracking quality. Top
speeds achieved 160rpm in 1.6x trials. In addition, we observe



Rθk Rθ̇k
Rτvas Rτham

1.0x 0.97±0.01 0.87±0.04 0.71±0.06 0.90±0.02
1.2x 0.97±0.01 0.88±0.02 0.67±0.04 0.90±0.02
1.4x 0.94±0.02 0.82±0.04 0.80±0.02 0.82±0.05
1.6x 0.95±0.02 0.85±0.02 0.80±0.01 0.80±0.03
1.8x 0.80±0.06 0.64±0.08 0.77±0.04 0.62±0.04

TABLE III: Mean correlation coefficients (R) for walking
trials. n =10 for all speeds.

tθk tθ̇k
tτvas tτham

1.0x 9.5±1.5 18.4±2.6 13.1±1.7 4.8±0.9
1.2x 7.2±0.9 11±0.7 10.3±1.2 5.1±0.7
1.4x 15.9±1.4 19.5±1.8 9.1±1.0 9.0±1.6
1.6x 12.3±2.4 15.2±2.3 10.7±0.8 9.3±1.7
1.8x 25.0±3.9 25.2±4.4 9.5±2.1 14.9±0.9

TABLE IV: Mean time delays (t) in ms for walking trials.
n =10 for all speeds.

a high degree of repeatability throughout all trials, with a
maximum standard deviation of 7.4◦ and 44rpm from the
mean values over all trials1. The results indicate that human-
like segment motions can be reliably and accurately replicated
for speeds up to 160rpm.

At higher speed trials, the quality of position and velocity
tracking declines (Tabs. III and IV). Nevertheless, velocity
targets were still reached with top speeds of at least 190rpm
(Fig. 5d), or about 87% of our desired performance goals
outlined in Tab. I. We could not test higher speeds, because
the compliance retainer in the knee joint failed during the high
speed trials.

B. Co-Contraction Experiments
Antagonistic muscle co-contraction is characterized by

equal pre-load torques of the muscles, τPL, and an equivalent
rotational joint stiffness, kknee. The corresponding desired
SEA torques are given by

τvas/ham = τPL ± kknee (φk − φ0) (4)

where φ0 is the joint reference position. To estimate appro-
priate values for τPL and kknee, we use a Hill-type muscle
model as described in Geyer et al. [9]. In these models, the
muscle force, F , is given by

F = AflfvF
iso
max (5)

where A is percentage of muscle activation, Fmax
iso is the

muscle’s maximum isometric force, and fl and fv are the
force-length and force-velocity relationships. Combined with
the knee joint radius, the muscle force defines τPL. For
calculating the local stiffness, we neglect modulations by fv
and model fl as

fl = exp

[
ln(0.05)

∣∣∣∣ lCE − lopt
0.056lopt

∣∣∣∣3
]

(6)

1The first leg swing was not included in this calculation, as impulse
accelerations from rest is not representative of system dynamics.

A (%) kmuscle (N/m) τPL (Nm) kknee (Nm/rad)

0 0 0 0
5 7310 1.22 6.59

10 14640 2.44 13.17
15 21950 3.66 19.79

TABLE V: Equivalent stiffnesses & SEA pre-load torques at
different muscle activation levels. Values calculated at lCE =
1/2lopt.

0% 5% 10%

T Simulation (s) 0.78 0.30 0.22
T RNL (s) 0.75±0.04 0.25±0.01 0.25±0.02

TABLE VI: Period of oscillation at different levels of co-
contraction.

where lCE is the length of the muscle’s contractile element
and lopt is its optimal length. The resulting muscle stiffness is

kmuscle = A
dfl
dlCE

F iso
max. (7)

Using scaled values of the vastus complex (lopt=0.04,
w=0.056), we calculate kmuscle, τPL, and kknee, for four
levels of A, ranging from 0 % to 15% muscle activation. (Tab.
V).

If RNL can successfully execute co-contraction, the motion
resulting from the torques described by eq. 4 matches the
motion of a physical driven pendulum whose center of mass
and inertia properties correspond to those of the shank. We test
the quality of co-contraction control by deflecting the shank
from its rest position φ0 = 0 and comparing the resulting
behavior to that of a simulated, equivalent driven physical
pendulum.

Fig. 6 shows the behavior of RNL during the co-contraction
experiments. Fig. 6a shows the observed motion and torques
for 0% co-contraction, which evaluates the quality of RNL’s
zero torque control. The shank follows the motion of a damped
pendulum with a period T that matches the simulated period
(Tab. VI). For 0% co-contraction, the desired τvas/ham is
zero. The measured torques track the commanded torque
within torque resolution limits of the SEAs. (±0.1Nm joint
torque resolution for SEA spring stiffness of 1.75Nm and
9bit encoders.) Higher levels of co-contraction are possible
(Fig. 6b-d), but the commanded torques are not well tracked,
as large oscillations result from the antagonistic actuators
counteracting each other with large pre-load torques. Because
the oscillations exceed the maximum torque rating of our
spring at approximately 15% co-contraction, we cannot com-
mand higher levels of co-contraction. This shortcoming of our
current implementation of antagonistic control is visible in the
position trajectories as well.

V. DISCUSSION & CONCLUSION

Our goal is to develop neuromuscular controllers for pow-
ered segmented legs. To realize this goal, we presented the



initial design and validation stage of a robotic test platform
targeting human-like performance. The platform currently
consists of RNL, a half-human sized, two segment robotic
leg with a floating compliant knee joint (Fig. 1d). The elec-
tromechanical design of the leg meets the physical weight-
size properties and actuation performance defined by human
physiology. To meet these criteria, we developed a modular,
compact SEA (Fig. 2) that matches the performance of the
vastii, the largest muscle group in human legs. In addition, we
formulated an SEA control that takes advantage of velocity-
based torque control without having to know load inertia (Fig.
4).

In two experiments, we tested if our design and control
implementation can deliver fast motions that characterize hu-
man locomotion and can generate antagonistic co-contraction
seen in neuromuscular systems. The experimental results show
that we can reliably generate human-like leg motions with
high positional accuracy for joint speeds up to 160rpm and
with lesser positional accuracy for joint speeds up to 190rpm
(Fig. 5), approximately 90% of the maximum designed for
joint velocity (Tab. I). The failure of the knee joint’s clamping
plates during the high speed experiments indicates that the
prototyped plates will need to be replaced by stronger material
versions to achieve these maximum speeds. On the other hand,
the compliant part of the floating joint did not show any wear
throughout the experiments, suggesting that its design works
very well. The co-contraction experiments revealed that the
antagonistic actuators can command zero torque within the
torque resolution limits of the SEAs, enabling near passive
motions at the joint level (Fig. 6a). Higher levels of co-
contraction up to 15% of human muscle activations were
possible, but produced oscillations in the SEA torque patterns
which limited the performance of co-contraction control.

The experiments revealed two shortcomings of our current
implementation, which we are working on overcoming. First,
the actuators’ bandwidth limitation creates about 25ms of
time delay during high speed position and velocity tracking.
Scaled to human dimensions, this delay would be about 35ms,
which is similar to the feedback delays observed in humans.
However, the SEA delay will increase substantially with larger
actuation levels necessary for stance motions. To diminish
the delay, we are looking to replace the linear rotary spring
in the actuators with a nonlinear stiffening spring. Stiffening
springs in SEAs enable high precision zero torque control with
high bandwidth responses at large commanded torques. The
advantages of nonlinear springs to series elastic actuation are
widely recognized (Pratt and Williamson [25], Hurst et al.
[15], Migliore et al. [19]), although a systematic method
for developing compact springs with custom force deflection
profiles has not been proposed. In addition, a custom nonlinear
spring coupler will also allow us to overcome the current
torque limit of 12.6Nm at the output that is defined by the
maximum torque capacity of the off-the-shelf springs in the
SEAs.

The second shortcoming is the 15% limit on co-contraction
control. The impact of this limit on implementing neuromus-

cular control strategies is unclear. While humans can reach up
to 30% of antagonistic co-contraction at the leg joints [23],
these levels are observed during the stance phase in which the
legs are loaded by body weight, which is about 17 times larger
than the weight of the shank. In the experiments, by contrast,
the leg was unloaded and resistance to motion was entirely
due to the mass properties of the shank. In particular, already
at 5% co-contraction the peak torques of the actuators reached
3.2Nm, which corresponds to the torque created by one body
weight. Hurst et al. [16] suggest that damping elements parallel
to the SEA spring may attenuate oscillations when load inertia
is low. We plan to test if adding such elements into the SEA
drivetrain will improve the quality of co-contraction control.

The presented robot validates our initial design and control
implementation, but does not represent a full neuromuscular
leg. We are currently expanding RNL into a multi-degree
of freedom leg with hip, knee, and ankle joints as well as
an adaptive, compliant foot. This robot will incorporate 7
actuators based on our presented SEA design and control
implementation. These actuators represent the major mono-
and bi-articular muscles that propel human legs during walking
and running. The actuators will be controlled by reflexive
neuromuscular models [8] [29], which will generate desired
torques for each SEA unit (τd in Fig. 4). With this robot, the
immediate goal will be to realize reflexive leg controls during
swing, crucial for autonomous balance recovery in amputee
locomotion. Ultimately, we expect this work to result in a
generalized gait testbed to develop and test neuromuscular
controllers for multi-articulated powered robotic limbs for
rehabilitation and humanoid robotics.
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