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Abstract—We developed a controller that allows our prototype 
lawnmower, CWRU Cutter, 1st place winner of the 2009 ION 
Autonomous Lawnmower Competition, to follow pre-defined 
paths and reflexively edge around obstacles before returning to 
the path.  CWRU Cutter is equipped with localization sensors 
(GPS) and obstacle detecting sensors (LIDAR and camera).   

The best human lawnmower drivers mow parallel lines, 
interrupted smoothly as necessary to follow the contours of 
obstacles.  To get this quality of cut from an autonomous mower, 
we developed a low-level obstacle avoidance reflex that keeps the 
robot close to obstacles when required to circumvent them.  Our 
method requires less processing than common planning solutions 
for two reasons. (1) The environment is represented by a 1-
dimensional Polar Freespace array rather than a 3-dimensional 
(x,y,theta) configuration space. (2) The robot only plans on the 
local environment recently perceived rather than planning all the 
way to the goal.  Other methods for local obstacle avoidance often 
assume cylindrical and/or holonomic robots.  These are not good 
assumptions for our rectangular, wheeled lawnmower.  Instead, 
we pre-calculate the polar ranges associated with the robot’s 
footprint and the areas crossed by the footprint during constant 
curvature stops.  These swept area ranges are easily compared 
with the Polar Freespace array that represents the environment.   

First, the robot uses GPS to generate initial velocity and angular 
velocity commands that steer the robot to a path of parallel lines 
covering the field to be mown. Data from a camera and LIDAR 
go into a 1-dimensional array of ranges (the Polar Freespace) 
that represents the local environment.  If the initial command 
puts the robot on a collision course, the swept area ranges will be 
greater than the Polar Freespace ranges.  To avoid obstacles, a 
reflex searches the velocity – angular-velocity space to find a safe 
command reachable from the current speed and as close as 
possible to the initial path command.   

Key reflex search parameters are examined in a MATLAB 
simulation assuming perfect localization and LIDAR data.  A 
velocity-dependent extension factor is calculated that allows 
obstacle avoidance as opposed to halting in front of obstacles.  
The search resolution is adjusted to trade-off calculation speed 
and clearance.  For example, by checking an average of 5 
velocity/ angular-velocity command pairs per time-step 

(maximum of 14 checked commands per time-step) our 66cm by 
100cm robot skirts a 2m-diameter obstacle with 1.3cm clearance.  
To compare, if we had used a previously published algorithm, 
such as Curvature-Velocity Method, that assumes the footprint 
was circular, the robot would not be able to pass any nearer than 
54cm to the side of obstacles.  

We tested this controller on our robot, CWRU Cutter, with the 
blades on. The software was written in LABVIEW and running 
on an NI-cRIO at 10 Hz. We observed that the mower was able to 
edge boxes, soccer balls, and picket fences with side clearance of a 
few centimeters, and then smoothly return to following parallel 
paths after passing the obstacle.  When rapid changes in the 
environment occur, such as a person walking in front of the 
mower, the robot stops until the environment stabilizes. In the 
future this method could be extended to allow the robot to back-
up and try again with relaxed clearances if the robot becomes 
stuck in a tight corner.  Alternatively, these reflexes could be 
adapted for low-level safety checking on other non-holonomic 
non-cylindrical robots operating in cluttered environments. 

Keywords-reflexive obstacle avoidance; domestic robot; 
hierarchial control 
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Fig. 1. The autonomous lawnmower CWRU Cutter has a 66cm by 
100cm footprint. It is equipped with LIDAR, camera, GPS, IMU, 
and wheel-encoders.  



I.  INTRODUCTION  
Autonomous lawnmowers currently available [1][2][3] cut 

random patterns, backing away from buried boundary wires or 
any obstacle encountered, much like indoor cleaning robots[4].  
To achieve the aesthetic of straight parallel path lines and the 
safety of predictable paths, prototype lawnmowers [5][6][7] are 
being designed to use non-random paths but plan to stay far 
away from obstacles.  With our prototype lawnmower, we are 
interested in safely cutting the grass close to trees, structures 
and landscaping, which requires a safe obstacle-edging 
behavior.  

Many types of autonomous service robots require collision 
avoidance, which can be done with range finders such as 
sonar[8][9][10] and LIDAR[11][12][13]. Complete planning 
algorithms for obstacle avoidance such as RRT [14] or 
Probabilistic Roadmap [15] can require extensive processing 
for precision maneuvers in a partially-observable 3-
dimensional (x,y,theta) configuration space. Other methods for 
local obstacle avoidance, such as Vector Field Histogram [16] 
or the Curvature-Velocity Method [17], require cylindrical 
and/or holonomic robots. For our rectangular, wheeled robot 
these are not good assumptions. Controlling for feedback on 
tactile sensors requires hard, smooth, unbroken obstacles [18] 
[19]. 

The Case Western Reserve University prototype 
autonomous lawnmower, CWRU Cutter (pronounced, “crew 
cutter”), a non-holonomic non-cylindrical vehicle with sensors 
for localization and range-finding (fig. 1), needs a simple real-
time, deterministic control algorithm to edge as close to 
irregularly-shaped obstacles as possible without collision and 
without unnecessary deviation from linear paths.  We wanted a 
reflexive controller that responds to the local, recently 
perceived environment.  An egocentric 1D polar representation 
is preferred because the environment is perceived with range-
finders, in addition to cameras, and because it allows us to 
avoid searching a 3-dimensional (x,y,theta) configuration 
space. Instead of making assumptions about the shape of the 
robot or the directions of motion, we pre-calculate the polar 
ranges associated with the robot’s footprint and the areas 
crossed by the footprint during constant curvature stops.  These 
swept area ranges are easily compared with the Polar Freespace 
array that represents the environment.  In addition, the mower’s 
environment is only partially observable but we wanted to limit 
the amount of internal environmental state represented. Table I. 
lists some established obstacle avoidance methods and shows 
how our edging controller fits a new combination of criteria. 

We used a hierarchical reflex architecture [28] and 
extended [29] to write a path driver. The result is a new 
complete control system that runs in real time in LabVIEW on 
an NI cRIO to solve the autonomous lawnmowing problem 
posed by the 2008 ION robotic lawn mower competition. At 
this competition, CWRU Cutter, in its first year, placed third in 
the advanced dynamic competition by cutting straight paths 
and waiting if obstacles were encountered. Without obstacle 
avoidance, the mower’s paths were limited by the accuracy of 
our absolute position estimates and we mowed only areas at 
least a meter away from stationary obstacles. Then we added a 
new obstacle avoidance strategy that considers the 

surroundings in polar coordinates like while guaranteeing 
safety of an arbitrary-shaped robot around irregular obstacles. 
Two safety reflexes, one that stops and one that veers left, 
allows the robot to mow within centimeters of irregular 
obstacles such as picket fences.  These reflexes could be added 
to any other robot with accurate range and position sensors to 
protect against collisions, with no effect on existing safe 
behaviors. In the 2009 ION competition, CWRU Cutter won 
first place. The ability to safely maneuver close to obstacles 
while following predefined paths is important not only for 
lawnmowers but also to other future vehicles such as 
autonomous delivery systems, self-parking cars, and 
inconspicuous surveillance robots.   

TABLE I.  COMPARISION OF EXISTING CONTROL STRATEGIES 
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RRT/PRM
Planninga

 +  +  + +  + 
Potential 
Fieldsb  +   +  + + 
Highspeed 
Vehicular 
Controlc 

+    +   + 

Integrated 
Methodd +  +  + + + + 
Transform 
to ARMe   +  + +  + 
Curvature-
Velocity 
Methodf 

+ + +  +    

VFHg + +  +    + 
Tactile 
Controlh  + +  +    

Our 
Edging 
Controller 

+ + + + + + + + 
a. Full planning solutions [20] [21][22] 

b.  Velocity and direction can be controlled by active and repulsive virtual forces[23] 

c. Reflexive terrain search level for controlling autonomous cars such as [24] [12] and [25] 

d. Searches portions of 5 dimensional configuration space. [26]. 

e. Transform to Arc-Reachable Manifold is described in [27].  This is not an obstacle avoidance 
method, but a clever way of calculating configuration space by assuming arc-paths.  Robot shapes 
made of straight lines or arcs can be used.  Non-holonomic paths are approximated by arcs. 

f. Divides the possible headings into regions bounded by arc-shaped collision paths. [17] 

g. In the Vector Field Histogram method, a polar histogram represents the environment. The heading 
is determined by finding a ‘valley’ of sufficient threshold in the histogram [16] 

h. In [18], a piano wire whisker allows wall following at 3cm. In [19] an active antenna is used for 
wall-following and corner tracking. 

 

 



II. CONTROL OF AN AUTONOMOUS MOWER 

A. Problem Formulation 
Speed and turning commands can be considered in the 

velocity-angular velocity plane, as in fig. 5. Given a maximum 
individual wheel-speed, we can determine a diamond-shaped 
boundary for acceptable (v,ω) pairs such that |ω·track/2| < |v – 
vwheel|, where v and ω are the mower’s velocity and angular 
velocity, respectively, vwheel is the maximum desired wheel 
velocity, and the track is the distance between the two 
independently driven wheels.  Acceptable commands are 
further constrained by traction acceleration limits, so a slew 
rate is enforced on v and ω.  At every instant, a controller must 
select the v,ω) pair that will keep the robot moving along the 
path, deviating by the minimum required to avoid collision 
with obstacles. 

B. Software Architecture  
Our architecture, fig. 2., uses reflexive behaviors that are 

transparent to upper levels, except when immediate action is 
required [30] [28]. Thus, the robot will follow the nominal 
path, unless there is an obstacle in the path. If possible, the 
obstacle is avoided; otherwise, the robot stops. 

A common alternative strategy is to have the robot plan 
paths to avoid any obstacles, which is done for non-holonomic 
vehicles in [22][12] and [5]. However, if during the time 
required for real-time re-planning, the robot develops an error 
in its absolute position or deviates from the path, the robot is 
susceptible to collisions. Since a reflex is based on recent 
relative information, it is more robust and asserts safety 
conditions quickly.  

There are two main observers that process and filter the 
sensor data. The Physical State Observer determines the 
location, orientation, angular velocity, and velocity of the 
robot. To do this CWRU Cutter uses a Kalman filter [31][32] 
on data from wheel-encoders, a Global Positioning System 
(GPS), and an Inertial Measurement Unit (IMU). The second 
filter is the Polar Freespace Observer. Its purpose is to filter 
together any obstacle information, for example from laser 
range finders, sonar, or touch sensors, into a single array that 

represents the length of clear space 360° around the robot. So 
far, we’ve used LIDAR scans and camera data.   

The physical state observer informs the path driver, which 
calculates (v,ω) to keep the robot on the predetermined path. 
Then reflexes check the (v,ω) pair with data from the polar 
freespace observer to determine if a collision will occur. If no 
collision is predicted, (v,ω) is commanded to the motor 
controllers. If the reflex detects a problem, a better (v,ω) is 
selected. 

III. POLAR FREE-SPACE OBSERVER 
In order to maneuver precisely around nearby obstacles, the 

robot must know what space around it is clear of barriers, even 
any unobservable areas such as the blind spot behind the range 
sensor. One way to do this would be to use an occupancy grid, 
but this would require collision checks across a 3D (x,y,θ) 
configuration space. We reduce the environmental 
representation to a single 1D array. The Polar Freespace 
Observer, fig. 3, operates by observing the current freespace 
and filtering that with the previous, shifted freespace. The 
observable freespace consists of the body footprint plus the 
ranges observed by the range finders. In addition or instead of 
range finders, we have also extracted free ranges from camera 
data [33]. The shifted freespace is the previous freespace 
estimation, shifted according to the change in position and 
orientation of its center. In CWRU Cutter’s case, this was at the 
center of the LIDAR. The location of the LIDAR is measured 
from the center of the GPS phase antenna, assuming the 
LIDAR is rigidly mounted to the chassis.  The shift, S, is 
accomplished by converting each range from polar to Cartesian 
coordinates, adding the change in position to the result, and 
converting back to polar coordinates φ

p , f p( ) . Ranges 
corresponding to angles φ  spaced evenly around the robot (at 
the same resolution as the LIDAR scans) are then interpolated. 
Then the scans are rotated by the change in orientation.  
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
t

p
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
t −1 ) + Δy, f


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p
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
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The observable freespace, a collection of ranges z, and the 
remembered freespace, a collection of ranges ft-1 that have been 
shifted by the amount the robot moved in the last timestep, are 
combined element by element according to their variances. The 
standard deviation, or square root of variance, of the new 
observation, σz, is small where the LIDAR can see or the 
whisker is activated, but large in the back where the body 
boundary is assumed because it cannot be observed by the 
sensors. The standard deviation of the shifted value, σft-1 is the 
standard deviation of the previous total scans, plus a factor 
based on the change in position. Thus at each angular 
increment around the body, the following update is performed 
at each timestep: 

 
Fig. 2. Hierarchical obstacle-edging and path-following architecture.  



   ft =
z ⋅ σ ft −1

2 + S( ft −1 ,Δx,Δy,Δθ ) ⋅ σ z

2

σ z

2 + σ fi−1

2
 (4) 

 where  σ f

2 =
σ z

2 ⋅ σ fit 1

2

σ z

2 + σ ft −1

2
 (5) 

This results in a very accurate map in front of the robot 
where the LIDAR is mounted and a less accurate map in 
directions that have not been observed by LIDAR for several 
time steps. If the robot sits facing forward long enough, 
eventually the total freespace will converge to the observable 
freespace. 

IV. MOVING OBSTACLE DETECTOR 
Instead of tracking any moving obstacles and attempting to 

project their paths, we want the robot to wait for any moving 
elements in the environment to stand still or pass. The Polar 
Freespace Observer lends itself to the detection of unexpected 
changes in the perception of the environment, since it is already 
shifting the previous sensor values.  

 S( f
i −1
, Δx, Δy, Δθ ) − z > Threshold  (6) 

Where the threshold is related to the uncertainty of the 
motion and obstacle detection.  Our threshold was equal to 
.5cm flat ground. Therefore the Moving Obstacle Detector, fig. 
4, operates within the Polar Freespace Observer and compares 
the new scans with the shifted scans. If several adjacent scans 
detect motion over the threshold and include zs that are 
sufficiently close to the robot, a flag is sent to decelerate and 
wait a minute to resume. If motion is still detected the robot 
will keep waiting. If a dynamic obstacle holds still long 
enough, the robot will recognize it as static and go around it.  

V. OBSTACLE-AVOIDING REFLEXES 
Safe  (v,ω) commands are those at which the vehicle can 

stop before impacting an obstacle. Any command for which 
each of the Swept Area ranges is less than the Polar Freespace 
range at its respective angle is safe. It has been demonstrated 

[34][35] that the common maze-solving heuristic – following a 
wall to the left or to the right – is sufficient to get around any 
finite dimensioned obstacle. Therefore we chose that our robot 
should turn left from the path as much as necessary to avoid the 
obstacle. The robot will take the longer way around the 
obstacle about half of the time, but the advantage is that the 
robot’s behavior is very predictable. In future versions, left or 
right could be set by a higher level as a flag to modulate the 
low level control until that particular obstacle has been cleared.   
Without a flag, the robot could oscillate between trying to 
choose left or right as it passes a single obstacle. 

A. Generating Swept Areas 
Since we cannot assume a cylindrical robot footprint, a 

look-up table of swept areas was generated for representative 
(v,ω) couples at given maximum decelerations.  For 
intermediate (v,ω) couples, the values were determined by two-
dimensional linear interpolation.  

First it was assumed the mower continued for two timesteps 
at the given (v,ω). This takes into account that by the time the 
mower has decided what command to use, the information is 
already one timestep old. The positions of the mower at these 
times are not included in the determination of the swept 
volume, because by the time actions take affect this area has 
already been covered. Allowing the swept area to be shifted in 
the direction of the proposed motion allows the robot to move 
away from obstacles that impinge slightly upon its current 
footprint. 

The mower’s position as it slowed with the maximum 
allowable deceleration along a constant curvature path was 
determined at every tenth of a timestep until the mower came 
to a stop. For each determined body position, the polar ranges 
of the body with respect to some origin fixed on the original 
body are determined In other words, we simulate what a laser 
range finder, kept at its original location, would see at each of 
the footprint boundary edges. The maximum polar value at 
each angle of every range was kept. This is a polar 
representation of the area the footprint would cover if it were 
stopping as fast as possible. This process could be extended to 
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Fig. 4. The polar freespace observer may be used as a moving obstacle 
detector by comparing the expected position of the environment to the new 
scans.  In this example, the range scans when the mower was at M1 and the 
moving obstacle was at A1 are shifted and compared to the scans observed 
when the mower is at M2 and the moving obstacle is at A2. There is a large 
difference in the magnitude near the moving obstacle but none near the static 
obstacle. 
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Fig. 3. When the mower starts up, the original polar freespace consists of the area 
swept out by the range sensors and the area occupied by the body.  After the robot 

moves, the freespace should consist of the new observable freespace and the part of 
the previous freespace that can be captured in a singled-valued polar function with 

origin at the new front of the robot.   



three-dimensional shapes for robots that sense in multiple 
planes.    

B. Safe Stopping  
The stop reflex, fig. 5, is composed of three phases that 

check the commanded velocity and angular velocity before 
they reach the wheel-controllers.  

In phase 1, speed and angular speed limits are enforced. 
These limits can be visualized in the velocity diamond in fig. 5. 
Each (v, ω) pair is a point on the plane. The legal (v, ω) pairs 
are within the shaded diamond defined by a maximum angular 
velocity (at zero forward speed) and a maximum linear velocity 
(with no angular velocity). If a velocity outside of this range is 

requested by software levels, the linear and angular velocities 
are scaled proportionally (constant curvature, ω/v) to the edge 
of the diamond. In phase 2, a slew rate is enforced. Only (v, ω) 
pairs within a box defined by maximum accelerations around 
the current pair are permitted. If the (v, ω) from phase 1 is not 
within the box, the closest value on the edge of the box is 
chosen.  

In phase 3, the maximum deceleration is applied if the area 
swept by (v, ω) after phase 2 is not completely contained by the 
polar freespace or if a moving obstacle is detected. Since the 
resolution of both the freespace and the swept areas in polar 
coordinates are the same, this operation is simple regardless of 
the complexity of the footprint: 

Velocity

Command

Current

Angular
Velocity

1
2

3

                       

Command
Current1 2

3

Freespace

Body

 
Fig. 5. The stop reflex consists of three checks on a (v,ω)Command from a higher level. First, velocities are checked to make sure they are within the diamond of legal 
velocities.  If not, a point along the boundary edge is chosen that has the same curvature, such as (v,ω)1.  Second, (v,ω)1 is slew rated to (v,ω)2  insure there are no jerky 
motions.  Third, if the swept volume corresponding to (v,ω)2 is not contained in the freespace, a decelerated speed with the same curvature (v,ω)3

 is passed to the low level 
controls.   

 
Fig. 6. The veer left reflex, as show in the v/ω plane. After the command (v,ω) from the path driver is slew-rated into the vicinity of the current perceived (v,ω), the 
command is incrementally shifted to find a safe command such that the projected swept areas are within the perceived freespace.  First the original command is 
checked, then points along the search line with resolution determined by n, then a maximum deceleration slow left is considered, and finally if none of the above are 
safe, the robot begins a constant-curvature stop, as in the Stop Refelx. 



  f ≥ SweptAreas ( v, ω)  + m     ∀φ (7) 

where η is a safety factor (we often used η = 1.2) and m is a 
safety margin. These parameters could be included in the 
footprint a priori, but adding them here allows on-the-fly 
adjustments, for example relaxing the safety if the robot gets 
stuck. 

These checks ensure that from any (v, ω) sent to the wheel 
controllers, the vehicle can stop before collision under the 
following conditions: (1.) The freespace represented by the 
polar freespace observer is conservative (there are no obstacles 
closer than the scan output by the polar freespace) and the 
mower body definition used in the swept volumes is at least as 
large as the actual body. (2.) Real-time operation is sustained. 
(3.) The reflex starts before the obstacle is too close to 
decelerate from. (For example, in fig. 5, if an obstacle is in the 
black area 3, the maximum allowable deceleration will be 
insufficient to prevent collision.) This condition can be 
satisfied by starting the reflex when the mower is at zero 
velocity in a position that does not touch any obstacles. (4.) 
The robot is capable of exerting the requested deceleration and 
the deceleration rate is no less than that used in the swept area 
calculations. To ensure the feasibility of our deceleration rates, 
we tested the largest decelerations the robot can execute 
without slipping on grass or pitching forward.  

C. Veering Left Reflex 
Instead of decreasing both v and ω, proportionally to veer 

left, we search for a safe command, detailed in fig. 6. As 
demonstrated in fig. 7, in general, to turn requires more 
clearance than to stop.  Thus to avoid backtracking, the turn 
should start before the stop starts. To turn with additional 
clearance, we can use an extension factor, η, such that further 
along the constant curvature arc is considered. Thus a 
command (v,ω) is safe if  

 f >SweptAreas(ηv, ηω) + m    ∀φ (8) 

Where the choice of η is critical. If η is too small (Fig. 7b), 
the robot cannot pass the obstacle. If η is too large (Fig. 7f) the 
robot begins slowing down much too soon. Moreover, at lower 
velocities larger η is required to pass obstacles. By 
approximating the extension factor required for a simple turn, 
an expression for a velocity-dependent η* can be developed 
based on the geometry of the robot and its turning 
characteristics.  

1) Turn Characterization 
A left turn requires increasing the curvature and may be 

accompanied by a speed decrease. For our differential steer 
robot, this means that the left wheel speed is decreased by an 
amount aΔt and the right wheel speed is increased by α aΔt 
where a, the wheel acceleration, is determined by the resolution 
of the search and the physical limits of the robot. So the 
velocity command (vt ωt) at time t will be: 

 vt = vt-1 –  ½ (1 – α) aΔt (9)  

 ωt = ωt-1 +  (α +1) aΔt / track (10)  

where Δt  is the timestep and track is the distance between 
the wheels. Thus, α parameterizes whether to turn without 
slowing down (α = 1) or slow down without turning (α = – 1).   

2) Anticipating Turning Clearance 
The forward distance, y, crossed during a turn can be 

approximated as:  

 y = max v(t)cos θ(t)( )
t=0

t

∫ dt
⎛

⎝⎜
⎞

⎠⎟
∀t  (11) 

where  

 v(t) = v − 12 1−α( )at  (12) 

 θ(t) =ωt − 12 1+α( )at 2 / track  (13) 
After substitution, the solution to this integral involves 

Fresnel Integrals, C(x) and S(x) which can be approximated as 
a ramp up to a constant :  

 C(x) = 0.77989min(x,1)  (14) 

 S(x) = 0.71397min(x 2,1)  (15) 
We found that assuming ω = 0 in the following equations is 

a simplification that has a negligible affect on the robot’s 
behavior.  Then the maximum value, y, will be either when v(t) 
= 0, (when the robot comes to stop)  at time, tstop, or when the 
vehicle has turned completely to the left, when θ = π/2 at time, 
tturn, whichever happens first.  

 tstop =
2v

a(1−α )
 (16) 

 ystop = 0.78vtstop + 0.25a(1−α )tstop
2  (17) 

Combining terms results in: 

 ystop =
2.56v2

a(1−α )
 (18) 

Similarly for tturn: 

 tturn =
π track
a α +1( )  (19) 

 yturn = 1.38v
track

a α +1( ) + track
α −1( )
2 α +1( )  (20) 



           (a) Stop Reflex only             (b) Veer Left with η = 1.1          (c) Veer Left with η = 1.23       (d) Veer Left with η = 1.35                                                                                

             
 
 
           (e) Veer Left with η = 1.5         (f) Veer Left with η = 2          (g) Veer Left with η*(v)       (h) Veer Left with η*(v, ω) 

              
 
Fig. 7. Simulated trials of a robot with initial velocity 1m/s encountering an obstacle with radius 3m demonstrate the importance of using a good extension factor.  
The robot is outlined in (a) and (b), the heavy line is the obstacle, and the path of the robot is traced. 
greendots: robot followed path command (reflexes considered path command safe) 
blue dots: robot reflexively turns with αsearch  
red dots: robot turns with αslowleft  
yellowdots: robot decelerates with constant-curvature 
 
  If the robot comes to a stop without turning (a) the robot will have to back up to make a left turn.  If the extension factor is set to too small a constant (b), the 
robot can get stuck by turning too late. If the extension factor is too large, the robot is decelerated far before the obstacle (e-f).  Using a variable extension factor 
η* based on either v and ω (h) or v alone (g) eliminates the trial and error and provides a smoother curve. For these conditions, η* (v =1, ω = 0, track = .6, αsearch = 
.5, amax =1) =  1.3405 (d), which turns out to be 9% greater than the minimum passable value of η = 1.23 (c). With these types of turning the tightest clearance of 
the body with the front of the obstacle is 2.5cm.  

       
Fig. 8. The simulated rectangular vehicle (shown at top of each run) passing cylindrical obstacles (such as trees) with radii = 0.1m, 0.25m, 0.5m, 1m, 3m, 5m, and 
10m using n = 10, αsearch = .5, and αslowleft = 0.  In each case, the clearance on the front (diagram bottom) of the obstacle is less than 25cm. The rear (diagram top) 
clearance, is determined by the path driver and increases with diameter from 30cm to 160cm.  
 

Robot 
Body 

Cylindrical  
  Obstacle 



 
To get the forward distance, y, crossed by the center of 

mass: 

 y = min(yturn, ystop) (21) 
To allow clearance for edges further from the center than 

the front, we add an offset factor equal to the largest proscribed 
radius less the distance to the front. For example for a square 
robot the offset is 0.21 w, where w is the width of the square.  

3) Extension Factor 
To extend the distances covered by the constant-curvature 

stop we need extension factor η*: 

 η* = 1
v

2amax
y(v,amax ,α search , track) + 0.21w

 (22) 

If η* is calculated at each timestep based on the current 
velocity, v, and the maximum acceleration of the vehicle, amax,,  
figure 7g is the result. The vehicle decelerates before the 
obstacle, followed by turning to follow the contour of the 
obstacle.  As is demonstrated in fig 8, with a good extension 
factor, the robot can pass many different radii obstacles. 

4) Search Resolution Sensitivity 
The search resolution, controlled by the number of 

divisions of the max acceleration, n, affects the smoothness of 
the control, the calculations required at each time step and, 
indirectly, the closeness of the vehicle to the obstacle.  The 
affect of n is plotted in figs (9-12). The safety margin in the v-ω  
space is equal to the distance between two of the points on the 
αsearch line in fig. 6 because the second safe point on that line is 
selected.  (Note that choosing a margin independent of n would 
double the number of freespace comparisons used in the 
search.)  Figure 9 suggests that n = 10 is best for this system, 
allowing the vehicle to pass the widest range of obstacles. 
Figure 10 demonstrates that the radius has a greater affect on 

 

 
Fig. 11. The larger the divisions, n, the more points checked in the search for a 
safe command, and thus the higher the computation time per timestep.  

 
Fig. 12 Jerkiness of the control was determined by comparing commands with 
smoothed commands.  Increasing n makes the velocity and angular velocity 
increase and decrease more smoothly. 

 
Fig. 10. The average speed during the pass around the obstacle increases with obstacle 
diameter because the path driver commands greater turning and lower velocities the 
further from the nominal straight-through path the vehicle is. 
 

 
Fig. 9. The minimum clearance between the body of the vehicle and the obstacle at 
the leftmost edge of the obstacle. Obstacle diameter and the number of divisions, n, 
affect the clearance. Also, for some n the vehicle cannot pass the obstacle. For the 
smallest radii, large n doesn’t provide sufficient clearance and the robot can get 
stuck.  For radii>bodylength, small n doesn’t provide sufficient search resolution to 
make the initial turn onto the obstacle and thus in the plot the clearance is infinitely 
large.  n=10 allowed the robot to pass each obstacle.  
 



speed than does n.  Figure 11 shows the computational trade 
off and fig. 12 shows the smoothness trade off for other n.   

For an arbitrary robot, we can use the estimation of y to 
transform the margin in v-ω space to a margin in length.  One 
would expect: 

 
dy
dv

Δv ∝ vΔt  (23) 

and thus an approximate upper bound for determining n for 
other vehicle parameters could be in the form: 

 Cres >
nv
1−α

α +1
amaxtrack

 (24) 

where Cres is a dimensionless proportionality constant.   From 
this example, with n=10, v=1m/sec, amax=1m/sec2, α = 
αsearch=0.5, and track = 0.66m, we estimate Cres to be 
approximately 30. 

5) Alpha Sensitivity 
The parameter α that characterizes turning should be in the 

range of -1 to +1 in order to maintain safety by not accelerating 
from higher commands and in order to maintain wheel-
acceleration limits, amax.  The slope of line in v-ω space along 
which safe commands are searched for is determined by αsearch. 
If a safe command along that line is not found, a more extreme 
measure is required to pass the obstacle.  So shifting the current 
velocity by the αslowleft with the maximum possible acceleration 
is checked. If even that isn’t considered safe, we slow the robot 
as much as possible (alpha = -1). (Fig. 6). To consider the 
effect of αsearch and αslowleft we tested the space of possible 
values (-1 to 1) in four environments (obstacles with radius .5, 
1, 3, 5).  The success of passing an obstacle is sensitive to α, 
especially for the smallest radius, fig. 13. Excluding the small 
radius data since it is so limited, we can examine the affects of 
α selection on speed (fig. 14), roughness (fig. 15), and 
clearance (fig. 16). Surprisingly higher α do not correlate with 
higher overall speeds.  We generally choose αsearch = .5 and 
αslowleft = 0, which is successful for the range of radii and 
represents a good trade-off of other parameters. 

VI. PATH DRIVER 
A priority for our lawnmower is to mow straight and 

parallel paths rather than random paths driven by other 
commercial autonomous mowers [1][2][3]. In addition to line 
segments, the mower also needs to be able to either pivot or arc 
to get between lines. Pivoting (attempting to maintain a zero 
net velocity while turning) is especially important in tight 
spaces. In addition to making complex cutting shapes possible, 
arcs are necessary for turning in thick grass where pivots were 
found to cause stalls. Our path driver follows strings of four 
different types of path segments: lines, arcs, pivots, and stops. 
For our mower, we generate these paths offline after measuring 
the GPS coordinates of the field corners. Many methods of 
path-tracking involve targeting a series of configuration states 
[36]. For our application, the line-following presented in [29] is 
a more natural choice because it provides a steering function 

which smoothly returns the moving vehicle to the line if 
obstacles or perturbations take the robot away from it. 

The line-following steering function given in [29] 
asymptotically approaches the desired path when the robot 
begins close to the path and the adjustment of a single 
parameter, σ, determines the “smoothness” of the path. 
However, it is noted that when the initial state of the robot is 
very different from the states along the path, undesirable 
instabilities occur which may not converge to the desired line. 
For example: in our simulation testing, when the robot was far 
from the path and facing the wrong direction it spiraled many 
times before starting to approach the path. This is because there 
is a discontinuity at Δθ = ±π and, if the Δd term is large, it can 
cause the robot to rotate beyond an orientation perpendicular to 
the path. We fixed this by including a cos(Δθ) factor into the 
third term of the equation thus changing the steering function 
provided to:  

        dκ/ds = –3κ/σ – 3(Δθ)/σ2 – Δd·cos(Δθ) /σ3  (25) 

Where κ is the curvature defined as κ = dθ/ds = ω/v and 
dκ/ds is the path derivative of curvature κ is controlled with 
linear feedback turns on κ, Δθ - the difference in orientation 
between the desired line and the robot, and Δd - the 
perpendicular distance between the path and robot.  (Note that 
adding a cosine term does not affect linearized stability 
calculations of [29]. 

The desired curvature, κ, can be determined from κ = κcurrent 
+ dκ/ds·|vcurrent|·Δt. Once the desired curvature is determined, 
we pick a velocity by choosing the minimum of : 

The desired speed specified for the path, vdesired 
The velocity required to stop by the end of the path, 

√(2·amd·deop) where amd is the maximum deceleration and deop is 
the distance to the end of the path 

A slew rate limit on the current velocity, vcurrent + amd·Δt, 
where amd is the maximum acceleration, Δt is the timestep and 
vcurrent is the current velocity 

A relationship to the curvature required that allows larger 
velocities at larger curvatures, but limits the speed at large 
curvatures. We used √(a/κ) where a is a constant. 

 Once the velocity is determined, is the angular velocity is     
ω = κ·v. After this calculation, the resulting angular velocity 
should be checked to ensure it is within a reasonable range, 
since infinite values for κ are not invalid. 

The path driver continues to the next segment whenever the 
remaining progress to the endpoint reached a set threshold. If 
the threshold is small, then the robot comes to a stop at the end 
of the segment.  A large threshold allows the robot to smoothly 
go between segments. 



 
Fig. 13. Many combinations of α >0 permitted passage of obstacles >0.1,  Fig. 14. Speeds tended to be slightly lower at larger α, perhaps  
but fewer combinations, mostly around αsearch = .6 were successful on all because more safe commands were found at lower α.  Low  
five obstacles.  speed about 74% highest speed.  

 
Fig. 15. Average difference between smoothed commands and actual commands, a measure of roughness, as a function of αsearch and αslowleft for trials that 
were successful for all four radii (0.5m, 1m, 3m, 5m).  Lower values are smoother. 

 
Fig. 16. Minimum clearance averaged over all four radii at front and side.  Front clearance seems to be affected more strongly by αslowleft while side 
clearance affected more by αsearch. 

 



 For pivots, the path driver specifies v = 0 and controls ω with a 
PID on orientation. For our robot, requesting a pivot sometimes 
caused the motors to stall in thick grass, since the trailing rear 
wheel would often be facing the wrong way. Therefore, we 
converted the line-following algorithm to an arc-following 
algorithm by changing the κ in the first term to a Δκ, where Δκ 
is the difference between the current curvature and the desired 
arc curvature. An important difference from line-following is 
the end condition. Since the primary purpose of our arcs and 
pivots is to re-orient the robot, the path driver moves onto the 
next segment when the orientation is within a certain tolerance, 
rather than the linear progress. If long arcs are given, both 
types of thresholds can be enforced.  An example of the path 
driver and the reflexes working together to direct the robot 
through a cluttered environment is shown in Fig. 17.   

VII. PERFORMANCE 

A. CWRU Cutter Hardware 
Our controller drove the robot CWRU Cutter, which is 

126cm tall (including the GPS antenna) 66cm wide and 100 cm 
long. The robot is built on top of MTD’s Troy-Bilt 48V 
Cordless Lawnmower’s deck and powered by a bank of lead 
acid batteries. The drive wheels are two 20” bicycle wheels, 
which are each directly driven by a Maxon motor with 
Dimension Engineering 25A Sabertooth motor controllers. The 
rear wheel is smaller and trails behind passively. A Sick 
LIDAR unit is mounted low on the front to  see 180º in the 
front of the robot. Tactile sensors and cameras may be added in 
future. A Novatel GPS receiver with Omnistar HP, a Crista 
IMU and quadrature encoders on the drive motors provide 
localization data.  

A National Instruments cRIO 9074 embedded 500 MHz 
microcontroller real-time controller and field-programmable 
gate array (FPGA) backplane run the lowest level control. The 
main control loop executes on the cRIO Real Time MCP 
processor and has a loop period of 100ms (10Hz). All CWRU 
Cutter’s software was written using National Instruments 
LabVIEW, since LabVIEW is easy to learn and supports FPGA 
and Real Time targets. The real-time loop: reads sensors (10 
ms), physical state observer computes current x,y,θ,v,ω (15 
ms), path driver determines v,ω (5 ms), polar freespace is 
computed (20 ms), reflexes find v,ω to edge obstacles if 
necessary (20 ms), and v,ω sent to motor controllers (5 ms). 

For testing and transportation, the path driver block can be 
by-passed and replaced with a signal from an RC controller that 
allows direct manual input of (v,ω). The reflexes can be used 
with manual control or can be by-passed.  

B. Simulation Results 
The Path Driver, the Polar Freespace Observer, and the 

Reflexes were tested and debugged in a Labview simulation 
environment (fig. 18). The simulation consisted of obstacles 
made of line segments that provided the sharp corners most 
difficult for the polar freespace observer. In the front of mower 
and along the sides, the freespace is accurate. But in the rear, 
the freespace occasionally degrades and cuts through the corner 

of the boundary. This is a problem that could be solved with 
close-range sensors in the rear. 

Even when random white noise of up to 10% of the velocity 
and signal delay of up to 2 timesteps were added, the reflexes 
were effective in preventing the robot from impacting the wall. 
It was impossible for the user to drive the robot into the edge of 
the freespace.  When the Path Driver was bypassed, a human 
operator was able to drive the robot into an alcove so tightly 
that the robot couldn’t get back out, because of the uncertainty 
of the freespace in the unobservable area.  Adding sensors in 
the rear or by modulating reflex safety factors if the robot 
became stuck would solve this problem. However, when the 
path driver drove the robot in a typical back and forth lawn-
mowing pattern, this situation rarely arose. 

 The path driver allowed very straight lines to be 
drawn, although sometimes its use in tandem with the veer-left 
reflex did create unexpected deviations. This occurred when 
the robot was driving fast toward an obstacle and started to turn 
away. The turn slowed the robot, which allowed it to return to 
the path, before turning away a second time to edge around the 
obstacle. In the worst case, the path driver might not hold the 
robot against the wall in a u-shaped obstacle for example. We 
can solve this problem in most simulation environments by 
having the path driver command a constant v and ω to the right 
when the robot is sufficiently far from the path. The bug 
algorithms solve this problem completely by using a wall-
following behavior and remembering some environmental data 
[34].  

 
Fig. 18. Results of a simulated trial on a straight-sided obstacle.  The 
orange parallel lines are the path traced by the robot, in red.  The swept 
area of the current velocity is in pink and the polar freespace is in green. 



 
Fig. 17.  The robot threading through a cluttered field of obstacles, demonstrating that the robot can follow discontinuous walls and pass through gaps, and 
even exit limited concave obstacles. At the end of the run, when the robot does get trapped in a corner, the robot stops before impacting the walls.  Velocity 
and angular velocity selected by the path driver (in green) and reflexes (blue for veering left and red for stopping) are shown. 
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C. CWRU Cutter Performance 
Without reflexes, localization inaccuracies required all a 

priori paths to be over a meter away from obstacles, and still 
unintended collisions stationary obstacles occurred due to drift 
and variation of the Physical State estimate.  Adding the 
reflexes allowed CWRU Cutter to edge closely along fences or 
skirt centimeters away from boxes, people, or walls in its path. 
In 20 trials, there was only once that CWRU Cutter touched the 
fence, but the contact was so slight that no damage was done 
either to the mower or to fence. Moving obstacle detection 
worked when indoors and the localization estimates were 
smooth.  

The LIDAR must be correctly adjusted for the robot to 
operate. If the LIDAR is too low, high grass will be treated as 
an obstacle. If it is too high, low obstacles might be overrun. 
Some common obstacles, like shoes, are below the grass line 
and need to be sensed in a different way. Vision[25] and range 
scan filtering[13] are promising solutions to these problems.  
The clearance between obstacle and mower can be controlled 
by safety factors, but is also influenced by the vehicle’s speed, 
allowing a closer cut at lower speeds. 

Unlike random-path commercial robots, CWRU Cutter cut 
lines that were parallel to the eye. The user is required to 
determine the coordinates of the boundary to be mowed, and 
then back-and-forth paths across the whole area are generated. 
The robot safely skirted stationary and moving obstacles 
without requiring tactile contact.  

VIII. CONCLUSIONS AND FUTURE WORK 
This method of filtering and reacting to sensed obstacle 

data allows robots of any shape to approach obstacles closely 
and narrowly edge around many obstacles.  We can use these 
reflexes with raw LIDAR data, LIDAR data filtered with a 
polar freespace, 3D range finder data, and even polar free 
ranges extracted from texture and color analysis of camera 
data[33][37].  These different types of data do not need to be 
put into a high-resolution configuration space, but can be 
considered in the form of a polar single-valued function which 
can be compared with robot footprint simply.  While the choice 
of path driver affects the speed and final path of the robot, the 
reflexes are robust to types of path driving and higher-level 
commands. 

Like any reactive behavior, the robot can get stuck.  Using 
the above formulation allows many typical lawn obstacles to be 
avoided, but in future work higher-level controllers need to be 
used to control reflex parameter to allow the robot to back up 
and try again.   Additionally, if the higher-level reflex 
recognizes that the robot is against an obstacle, it would 
prevent the robot from looping back when non-convex 
obstacles are encountered. 

During the many tests of our robot, we were often seeking a 
good trade off between low clearances and ease of manual 
control.  For example, indoors the operator often preferred to 
drive with the reflexes off in order to drive with increased 
speeds in cluttered rooms or corridors, trusting that the 
increased traction would allow for greater accelerations and 

decelerations.  Future work could allow safer maneuvering 
around even tighter obstacles by perceiving the environment 
with additional close-range sensors in critical directions, and 
real-time learning and adjustment of critical reflex parameters 
to reflex perceived performance.  
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